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Abstract 

 
Objectives   Applying the Bayesian approach to the analysis of IPD from multicentre/ 
multinational RCTs with the aim of estimating location-specific parameters to populate 
decision models for location-specific decision making. 

Methods   Multilevel or hierarchical modelling is the analytical framework used to handle 
hierarchical cost-effectiveness data. Hierarchical modelling was developed in a Bayesian 
framework, that is, the estimation of the parameters was performed by MCMC, which was 
used to populate the economic decision model. Bayesian probabilistic modelling was used to 
evaluate the decision problem and Bayesian shrinkage estimation procedures were used to 
obtain location-specific CE estimates. 

Results  Using data from a recently conducted economic analysis of the RITA 3 trial, 
location-specific cost-effectiveness measures were obtained and compared to the trial-wide 
results. For the analysed centres, the centre-specific CEPs showed higher variability in mean 
differential cost and mean differential QALY estimates compared to the trial wide results, 
with the latter having longer left tail estimate distribution. The majority of the location-
specific ICER results show higher cost per QALY for the intervention strategy compared to 
the trial wide results (approx. £41,400/QALY). With respect to centre-specific CEACs, the 
curves for the selected centres display great variability across centres in cost-effectiveness for 
given values of the threshold, λ. If the decision maker is willing to pay £50,000 for an 
additional QALY, the probability that the intervention strategy is cost-effective is, for 
instance, 0.34 for centre 37, compared to the 0.65 for the trial wide results. 

Conclusions   This work showed two important results. Firstly, it was demonstrated, through 
the use of one illustrative example, how a trial-based CEA may be implemented within a 
Bayesian framework and evaluated using Gibbs sampling MCMC methods. In particular it 
has provided the ‘building blocks’ for extending the modelling framework to allow the 
incorporation of more relevant evidence: (i) data may be added in a prior distribution format; 
and (ii) data from different study designs (e.g. RCTs, observational studies together with 
expert judgement). Secondly, it was demonstrated how Bayesian hierarchical modelling could 
be used to estimate more appropriate cluster-specific parameters for use in DAMs where IPD 
from a multi-location trial are available. Bayesian hierarchical modelling estimates can be 
used to explore correctly the variability between centres/countries of the cost-effectiveness 
results allowing the correct quantification of uncertainty by adjusting the standard errors to 
reflect the estimates variability both within and between locations. 

Keywords  Bayesian methods; Multilevel/hierarchical modelling; cost-effectiveness analysis; 
decision analytic models; individual patient data. 
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1 Introduction 
The main purpose of health care economic evaluation (EE) is to assess the economic 
consequences of health interventions, programmes or services with the aim of informing 
decisions regarding resource provision within health systems operating under a fixed budget 
[7]. Economic analysis of health interventions concerns choices that are consequence of 
financial pressures, budget constraints and resource scarcity. The National Institute for Health 
and Clinical Excellence (NICE) in the UK is an example of an institution that uses EE to 
support efficient resource allocation. 

Cost-effectiveness analysis (CEA) is the most commonly used EE method, where 
effectiveness is commonly measured in terms of Quality Adjusted Life Years (QALY). The 
main application of CEA is in supporting reimbursement decisions made by health care 
providers regarding health technologies. CEA evaluates technologies to find which one 
minimizes the cost of generating a given level of health, or which one maximizes the level of 
health within a specified budget [10]. 

In order to inform NICE decision-making process, an EE is required to address two main 
questions [1]. Firstly, with the current evidence, is the technology cost-effective? Secondly, 
would further research correspond to good ‘value for money’? To deal with the former, the 
methodological structure has to follow some specific criteria: (i) the objective function has to 
be clear and precise; (ii) the comparison of the new technology needs to be judged against all 
relevant comparators and needs to include all relevant evidence; (iii) there needs to be 
consistency in costs and benefits perspective (many argue for a societal perspective, however 
a third party or payer perspective is commonly adopted); (iv) and, finally, it needs to assess 
the costs and effects of an alternative treatment strategy within an appropriate time horizon. 
The second question requires that uncertainty regarding an adoption of a decision must be 
unequivocally characterised [39]. Quantifying the cost of making a wrong decision represents 
the basis for assessing if whether acquiring further evidence through funding new research is 
valuable [29]. 

 

1.1 Assessing cost-effectiveness 
The summary measures of interest to the decision maker are the expected values of both cost 
and effectiveness outcomes for each treatment strategy. These are commonly aggregated in a 
distinctive cost-effectiveness (CE) outcome measure as the incremental cost-effectiveness 
ratio (ICER) =∆C/∆E (∆C-mean differential costs; ∆E-mean differential effects), or its 
reformulation, the net benefit (NB) measure. Decisions on whether to accept/reject the new 
technology can me made using analytic models, avoiding, this way, a subjective burden. As 
there is uncertainty around the CE estimates, any decision based on CEA will also be 
uncertain [30]. A decision model can explicitly represent this uncertainty and quantify it 
through the use of probabilistic sensitivity analysis (PSA). The objective of probabilistic 
modelling is to reflect the uncertainty in the input parameters and illustrate its consequences 
on the outputs of interest [2]. Decision analytic models (DAM) are used to combine 
information from various sources of information using mathematical relationships [12; 37].  
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1.2 Multicentre / multinational RCTs 
Often, when conducting Randomized Controlled Trials (RCTs), data on resource use and 
outcomes are gathered in several different sites. The common objective is to generate a 
generalizable CE estimate which can be applied across locations. This practice implicitly 
assumes that resource use and effectiveness data are perfectly transferable [36]. The question 
is how generalizable are the results of a multiple location evaluation to specific sites and their 
individual health care situations [15; 45]. 

If a comparison of health services in different locations is performed, it will disclose 
important differences in a variety of parameters relevant to the decision problem [38]. The 
emphasis goes to economic variables including resource use and factor prices, technical 
efficiency and preferences about health states. The between centre variability is expected to 
affect the level of resource use, unit costs and outcome data observed in the trials. The dataset 
will therefore have a hierarchical structure with potential correlation in costs and outcomes 
linked to patients treated within the same location [15; 24]. 

Studies from various multinational trial-based analyses assume that resource use data are not 
at all exchangeable between locations, while effectiveness data are. However, despite this 
methodology being only feasible when a sufficient number of patients were recruited in the 
location of interest [44], it disregards also that costs and effects are naturally correlated. 
Consequently, the correct quantification of uncertainty surrounding CE estimates is 
endangered [26]. 

Several analytical methodologies have been proposed to analyse multinational trial data and 
most of these involve regression analysis. Willke et al [45] explored the between-country 
variability by applying a regression model that included country-by-treatment and country-by-
outcome interaction terms, which facilitated country-specific estimation of mean differential 
costs and effects. Manca et al [24] extended the NB regression approach [18] to contain the 
hierarchical structure of economic data in multilocation trials. The use of hierarchical models 
was thought to provide an ideal pathway to analyze CE individual patient data (IPD) from 
multiple location trials allowing for between-location variability. Hierarchical models were 
therefore shown to be able to obtain trial-wide and location-specific estimates of CE 
measures, while correctly quantifying sampling uncertainty around these mean estimates.  

Pinto et al [35] and Willan et al [44] explored alternative estimation methods to obtain 
country-specific estimates of CE from summary data derived from a large multinational trial. 
Hierarchical modelling was used alongside empirical Bayes shrinkage estimation to obtain 
country-specific mean estimates. Moreover, Manca et al [26] recently investigated the use of 
Bayesian bivariate hierarchical regression modelling to analyze CE IPD collected alongside 
multinational trials using also empirical Bayes shrinkage estimation methodology. 

 

1.3 Bayesian methods for CEA 
Recently, Bayesian DAM techniques, evaluated using Markov Chain Monte Carlo (MCMC) 
simulation, have started to be applied to EE decision models. Bayesian methods have been 
primarily supported by Parmigiani et al [34] and latter by O’Hagan et al [33] in the evaluation 
of CE utilising clinical trials data whilst allowing for correlations between the costs and 
effects.  

Given that the relationship between the inputs is too complex to return a ‘closed form’ 
solution, describing the exact distribution of the estimator for the CE measure, Monte Carlo 
(MC) techniques are usually employed to propagate uncertainty in the model and to produce 
an estimate of the joint distribution of the mean differential costs and mean differential 
benefits. The conventional approach to probabilistic DAM is to use a frequentist ‘two-stage’ 
approach. That is, firstly, a series of analyses are performed to obtain point estimates and 
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uncertainty around parameter estimates – and this constitutes the ‘first stage’. The outcomes 
of these analyses will return all or part of the parameters input estimates of the Markov 
model, i.e. transition probabilities and outcomes such as costs and utilities. Secondly, 
distributions characterising the uncertainty over these parameter estimates are explicitly 
defined, based on the nature of the parameter and the method of estimation previously used 
[3]. These are then specified in a spreadsheet and randomly sampled from to obtain a set of 
realizations for the Markov parameters. The Markov model is evaluated for each of these sets 
and CE is calculated through the MC estimator1 – the second stage of estimation is then 
complete. This non-parametric approach to MC simulation is adopted in practice and the 
empirical distribution is used to represent the distribution of the CE outcome. 

An alternative, and the estimation approach advocated in this paper, is to use a ‘one-stage’ 
Bayesian modelling approach. This ‘one stage’ Bayesian approach comprises the acquisition 
of posterior distributions for the parameters through MCMC estimation procedures. Given 
this valuable information, there is no need to assume distributions to characterise the 
uncertainty over the parameter estimates. One can use directly these posterior distributions to 
obtain a set of realizations of the Markov parameters that will be used to evaluate the Markov 
model. The Bayesian analyses described herein relaxes therefore the need for some of the 
distributional assumptions usually attached to probabilistic modelling. 

 

2 Methods  
 

2.1 Decision analytic models design 
The aim of CE evaluation of health interventions is to evaluate the distribution of the 
expected outcomes. DAMs design, for which the evaluations of expected outcomes with an 
explicit expression is possible, are denoted as cohort or aggregated models. Examples are 
decision trees and discrete time Markov chains [2]. For both types of DAMs, each event or 
clinical state is associated with a monetary cost and a measure of benefit such as QALYs.  

The majority of applied DAMs in chronic or long-term diseases are aggregated Markov 
chains, typically discrete time models. When the instant of episode occurrence is pertinent, 
when events may happen repetitively throughout time or when time risk is integrated in the 
decision framework, Markov chains are a valuable technique [41]. In EE the use of non-
homogeneous Markov chains is common. This framework implies that transition probability 
(TP) functions are dependent on time [16; 40].  

A Markov model encompasses a set of mutually exclusive and collectively exhaustive health 
states. Each individual in the model must be in one and only one health state at any point in 
time. At fixed increments of time - Markov cycle length - subjects’ transit among the health 
states according to a set of TPs which can be constant or time-dependent. Health states can be 
transient (individuals can revisit the state at any time), temporary (individuals can stay in the 
state for only one cycle), or absorbing (once entered, individuals can never exit the state) [8]. 

 

                                                            

1 Most probabilistic models assume independence between parameter estimators. Nevertheless, when 
the covariance between parameters is known it should be incorporated. Techniques such as the 
Cholesky decomposition of the variance-covariance matrix for an underlying multivariate normal 
distribution can be engaged to jointly capture uncertainty. 
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2.2 Use of statistical modelling to analyse IPD-RCT data to estimate model 
inputs 

In cohort models, the simplest inputs available to estimate TPs are proportions (cumulative 
incidences) or rates (incidence rates) from published sources [28]. However, when IPD is 
available, regression analysis is conducted to estimate TPs. The regression framework used to 
estimate TPs is commonly based on parametric distributional assumptions. One can use 
models such as linear models, generalized linear models, longitudinal models or other 
modelling methodologies in order to provide adequate inputs to the Markov process. 
Estimation of TPs is most commonly conducted through maximum likelihood, as illustrated 
by Craig et al [6]. 

If patient level resource use from a clinical trial are available one can use standard ordinary 
least squares (OLS) regressions to obtain mean costs for the different alternative technologies 
or, accounting for the usual skewed behaviour of cost data, one can obtain reliable estimates 
by using a Log-Normal distribution or generalised linear models with, for instance, an 
underlying Gamma distribution (distribution constrained on the interval 0 to positive infinity). 

In the case of patient level health-related quality-of-life (HRQoL), such as the EQ-5D for 
instance, one can analyse these data using the Log-Normal or the Gamma distributions on the 
disutility scale (e.g. 1-utility). Depending on the clinical trial time horizon, one can have 
utility data at randomization and at other pre-defined points in time. Regression analysis of 
longitudinal data approach can be employed in order to obtain estimates of HRQoL changes 
after randomization. 

In the estimation procedure of TPs or other model inputs it is possible to consider the 
hierarchical nature of the data through the usage of multilevel models, applicable, for 
instance, in the case of multicentre/multinational trials. 

 

2.3 Multilevel/Hierarchical regression analysis  
When dealing with hierarchical data structure, such as data gathered alongside a multicentre 
RCT, multilevel models are the appropriate approach to obtain unbiased estimates of 
aggregate measures [11]. Implicit in hierarchical data structure is cross-group heterogeneity. 
This type of heterogeneity might emerge because of unmeasured factors in group j, where 
there are { }1,...,j C=  clusters in the data. In lieu of non-pooling models, researchers are 
interested in modelling both level-1 (xi) and level-2 (zj) covariate effects and models may 
include factors measured at both levels.  

 

Multilevel linear and multilevel generalised linear models - Random intercepts and slopes 

Considerations of multiple levels of variation lead to models with random-effects. Multilevel 
models allow the possible relationship between the response variable and covariates [11; 21]. 
Suppose there is one level-1 factor and one level-2 factor, the unconditional model would be 
given by: 

 0 1ij j j ij iy xβ β ε= + + , eq. 1 

where 1 jβ  is the slope coefficient for variable ijx . The constant term, 0 jβ , randomly varies 
across units j. Accounting for this, the unconditional model is obtained with 

 0 0 0j juβ β= +    and  1 1 1j juβ β= + , 

and has reduced-form   ( ) ( )0 0 1 1ij j j ij iy u u xβ β ε= + + + + , eq. 2 
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where 0β  is the intercept estimate; 1β  the slope coefficient for the relationship between xij 
and yij; 0 ju  the level-2 intercept error; u1j the error term for the randomly varying slope 
coefficient xij; and iε  corresponds to the level-1 error term [11]. 

Multilevel modelling is applied to logistic regression and other generalised linear models in 
the similar way as with linear regression. 

 

Multilevel survival models 

In a multicentre RCT one may be interested in the treatment effects on the survival of 
patients. Therefore, one has to extend the usual survival analysis to hierarchical survival 
models with, for instance, a Proportional Hazards Model (PHM) with random-effects to 
investigate the centre effect on the efficacy of the treatment as well as on the baseline. This 
may be understood as a natural extension of the usual mixed-effects model to survival 
analysis [11; 27]. 

The fixed-effect model inherently assumes that the centres comprise the entire population of 
interest. A more realistic assumption is that the centres are random samples from a larger 
population. For the random-effect survival model let’s assume that there are C distinct centres 
with nj patients from the jth centre. Let tij be the survival time for the ith patient from the jth 
centre (j=1,…,C; i=1,…,nj). A PHM is assumed for the effects of covariates and centres: 

( ) ( ) ( ) ( ) ( ) ( )( )0 0 0 0 1 1| exp .ij ij ij j j ijh t x h t x h t u u xψ β β= = + + +  eq. 3 

In the above model ( )|ijh t −  represents the hazard for the ijth patient conditional on the 

random-effects u0j and u1j of the explanatory matrix xij, ( )0h t  is an unknown baseline hazard, 
β1 is the fixed-effect corresponding to the covariate xij. The random components u0j and u1j 
represent the deviation of the jth centre from a baseline hazard (baseline risk).  

With a large number of observations for each centre, one could estimate each centre 
parameter. However, in practice, one has limited data and must borrow strength across centres 
to make inferences about either u0j and u1j, so it is usually assumed that the random-effects are 
independent variables drawn from a family of distributions. This assumption implies that one 
can learn about one centre parameter by understanding the variability in parameters across the 
population. Thus, the model is completed by the distributional assumption about the random-
effects and a variety of specifications for this distribution can be applied [27].  

 

Multilevel linear mixed models in a longitudinal data framework 

With longitudinal data a time element is added to the data and there are repeated 
measurements for each individual observation, for instance, HRQoL data collected at several 
time points alongside RCTs. Longitudinal modelling allows one to look at dynamic 
relationships of individuals and also allows one to control for unobserved cross-section 
heterogeneity. Longitudinal data are closely related to multilevel/hierarchical data, being 
themselves hierarchically structured by individual [19; 20; 46]. 

One may be interested in modelling datasets where there is a multilevel structure and, 
therefore, to have several random effect levels [11]. Adopting the longitudinal framework, the 
individual may be a level-2 in, for instance, a three-level linear model. Nevertheless, the 
existence of several levels in the data may bring some problems (i) due to non-independence 
between the levels; and (ii) because one wants to investigate the different clusters in each 
level. Therefore, one is interested in generalizing the mixed effects models towards nested 
random-effects. 
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In the case where one has three random effect levels, nested one within others, the linear 
mixed model is: 

, , ,     

          for  1,..., ,  1,...,  and 1,...,
tij tij j it j ji t ji tij tij tij

j ij

y X Z u Z u Z u

j C i N t T

β ε= + + + +

= = =
. eq. 4 

where, ytij is the dependent variable array for the tth cluster of the level-3, nested on the ith 
cluster of the level-2, nested on the jth cluster of the level-1; Xtij is the fixed effects covariate 
matrix ( )tijn k× ; β is the fixed effect array; Zj,it is the level-1 random-effects covariate matrix; 

uj is the level-1 random-effects array (normally independent distributed (NID) with mean 0 
and Σ1 variance-covariance matrix); Zji,t is the level-2 random-effects covariate matrix; uji is 
the level-2 random-effects array nested in level-1 jth random effect (NID with mean 0 and Σ2 
variance-covariance matrix, for different j’s, i’s or t’s); Ztij is the level-3 random-effects 
covariate matrix; utij is the level-3 random-effects array nested in level-1 jth random effect and 
nested in level-2 ith random effect (NID with mean 0 and Σ3 variance-covariance matrix, for 
different j’s, i’s or t’s); εtij is the random errors array (NID with mean 0 and σ2I variance-
covariance matrix, for different j’s, i’s or t’s); C is the level-1 number of clusters; Nj is the 
level-2 number of clusters nested in the jth level-1 and Tij is the level-3 number of clusters 
nested in the jth level-1 cluster and nested in the ith level-2 cluster, with uj, uij, utij and εtij 
independent. 

 

2.4 The Bayesian Approach 
Bayesian methods can be considered as an alternative to the classical approach to statistical 
inference [23]. The increased feasibility of implementing Bayesian methods has been made 
possible by the advances made in computer power, and the development of user-friendly 
software such as WinBUGS [43]. The Bayesian approach is appealing since it provides a 
flexible modelling framework, allowing the researcher to venture beyond the confines of 
analyses provided in standard statistical packages and account fully for all forms of model 
estimation uncertainty [42]. 

Bayesian inference refers to statistical procedures that model unknown parameters (and also 
missing and latent data) as random variables. Bayesian inference starts with a prior 
distribution on the unknown parameters and updates this with the likelihood of the data, 
yielding a posterior distribution (that when obtained by simulation is non-subjected to 
distributional assumptions) which is used for inferences and predictions [11].  

Therefore, interest lies in the calculus of this posterior distribution ( )|f xθ  of the parameter θ 
given the observed data x. According to the Bayes theorem, the posterior distribution can be 
written as  

( ) ( ) ( )
( ) ( ) ( )|

| |
f x f

f x f x f
f x
θ θ

θ θ θ= ∝ , eq. 5 

where θ is a parameter or a parameter array with prior distribution ( )f θ , and x a random 
variable with probability density function, ( )|f x θ , belonging to the space-parameter Θ [32]. 

In the Bayesian framework, all parameters must have prior distributions. Most prior 
distributions are vague/non-informative or are prior models. Opposed to prior models, non-
informative priors are intended to allow Bayesian inference for parameters for which not 
much is known beyond the data included in the analysis at hand [11]. The simplest form of 
Bayesian inference may use a Uniform prior distribution, so that the posterior distribution is 
the same as the likelihood function [4]. It is usually performed sensitivity analysis to check if 
results are stable across a range of different prior distributions [5]. 
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The usual MCMC method used is Gibbs sampling. Gibbs sampling is an iterative MC method 
for generating samples indirectly from a difficult joint distribution of the model parameters 
without calculating the density [23]. The mechanism is based only on elementary properties 
of Markov chains. The basic idea of Gibbs sampling is to partition the set of unknown 
parameters and then estimate them one at a time, or one group at a time, with each parameter 
or group of parameters estimated conditional on all the others [44]. 

 

Bayesian shrinkage estimation 

The common analysis of multicentre RCT datasets would use pooled estimates common to all 
centres or would split the dataset, with all the statistical limitations attached to it. An 
alternative approach uses empirical Bayesian shrinkage estimation. If one assumes that the 
individual centre data is sampled from an underlying Normal distribution, then a pooled 
random-effects estimate provides an empirical mean for the prior distribution for the centre-
specific differences [35; 44]. The estimated difference for a particular centre is then the mean 
of the posterior distribution, which is given by a variance-weighted linear sum of the prior 
difference (pooled random-effects estimate) and the observed difference for that centre. That 
is, the empirical Bayes shrinkage estimator is a weighted sum of the estimate provided by the 
pooled random effects estimate and the estimate provided by the centre-specific observed 
difference [24; 44]. 

The key advantage of this approach is that it affords a gain in statistical efficiency by 
‘borrowing’ information from all locations in the estimation of the difference for an 
individual centre. The amount of information ‘borrowed’ depends on the proportion of the 
total variance that is due to the variance between centres. As this proportion decrease, more 
information is ‘borrowed’, and the estimates of the centre-specific difference are ‘shrunken’ 
towards the pooled random-effects estimate [35]. 

 

3 Motivating Example: The RITA 3 trial 
In this section, the use of Bayesian hierarchical regression models to analyse hierarchical 
datasets from multicentre trials is illustrated using a specific case study: the Intervention Trial 
of unstable Angina (RITA 3). Although this is a multicentre trial conducted in one country, 
the analytical principles to apply in multinational studies are the same. A DAM was 
developed and information from the RITA 3 trial was previously analysed [17] to inform the 
DAM, although ignoring the hierarchical nature of the data. The analysis published in the 
original paper was replicated in the current work and adapted to consider the evident 
hierarchical structure of the trial data, and to obtain location-specific estimates that will 
populate the DAMs. All the assumptions surrounding the original regressions were 
maintained, particularly model specification and choice of covariates. Suggestions for 
improvement and further extensions to the present analysis are discussed in the following 
chapter. 

 

3.1 Background 
The third Randomized Intervention Trial of unstable Angina study aimed at supporting the 
existing evidence that suggested that an early interventional strategy (routine angiography 
followed by revascularization if clinically indicated) in the management of patients with non-
ST-elevation acute coronary syndrome (NSTE-ACS) could improve health outcomes, but at 
increased costs, when compared with a conservative strategy (ischemia or symptom-driven 
angiography). The CE of the intervention in different risk groups was assessed to determine 
whether the gain in health outcomes justified the increase in costs. Full clinical and economic 
results have been published elsewhere [9; 17]. 
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Based on data from RITA 3 trial, the economic analysis investigated the heterogeneity in CE 
in patients with different risk profiles at randomization and the effectiveness of early 
intervention. The economic model provided a tool to extrapolate the trial results to a relevant 
lifetime time horizon.  

A series of regression models (referred to as equations) were estimated to determine the rates 
of cardiovascular death (CVD) or non-fatal myocardial infarction (MI) during the index 
hospitalisation and the remainder of the trial follow-up period. These estimates of 
effectiveness were then incorporated into the CE model which is based on a short-term 
decision tree (instantaneous in time) and a long-term Markov structure. The main purpose of 
the short-term tree was to distribute the analysed cohort over the starting states in the long-
term Markov structure and to estimate the short-term costs associated with each treatment 
strategy. The short and long-term models represent the index hospitalisation and the post-
index hospitalisation, respectively. Costs and QALYs were determined for the index 
hospitalisation and for each state in the long-term Markov structure. The Markov structure is 
shown in Figure 1. The box [MI/CVD] in the figure indicates that a composite event has 
occurred during a cycle and does not represent a formal health state since patients are then 
assigned to either a fatal or non-fatal state based on a separate calculation. 

 

Analysis of effectiveness 

A logistic regression model was used to estimate the risk of the combined endpoint of CVD or 
MI during the index hospitalisation in the short-term decision tree. The index hospitalisation 
was defined as the time from randomization to hospital discharge (Equation 1 in Figure 1). To 
estimate the risk of the combined endpoint of CVD or MI during the remainder of the trial 
period, a time-to-event Weibull PHM was employed with the starting time set at hospital 
discharge. In extrapolating beyond the period of trial follow-up (5 years), a conservative 
assumption of no continued treatment effect from the early interventional strategy was made 
(Equation 2 in Figure 1).  

There were insufficient patients in RITA 3 trial to estimate the risk of a second composite 
endpoint of MI or CVD following a non-fatal MI. Instead, the risks of a first composite 
endpoint were used, multiplied by the coefficient for the additional proportionate risk for 
patients who had a non-fatal MI prior to their entry into the RITA 3 trial. A Weibull PHM of 
risk of a second composite endpoint of CVD or MI was employed (Equation 3 in Figure 1). 
The hazard of dying from non-cardiovascular causes was estimated using general UK 
population age-and-sex specific life-tables, adjusted to exclude cardiovascular mortality 
(ICD10 codes I00 to I99) [13; 31].  

A logistic regression model was employed to estimate the proportion of composite endpoints 
being non fatal. A dummy variable was used to investigate if this proportion was different 
between the index hospitalisation and the remainder of follow-up (Equation 4 in Figure 1). 

 

Analysis of costs 

Comprehensive resource use data were collected in patients in RITA 3 up to one-year follow-
up. Two standard OLS regressions were used to determine mean costs for the alternative 
strategies during the index hospitalisation and for the remainder of the trial. Mean costs were 
estimated, differentiating between management strategies, for patients with and without a 
composite endpoint of CVD or MI. When extrapolating beyond one year, the analysis 
assumed no difference between the treatment strategies in the cost of patients not 
experiencing the composite event. 
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       Short-term decision tree          Long-term Markov structure

No event Lifetable

Treatment
strategy            Equation 2

Death    Equation 4

MI/CVD          Equation 4      Equation 3

Non-fatal MI Lifetable

MI/CVD Dead (CV)

  No event

Post MI

  Dead (Non CV)Dead

No event

Post MI

Equation 1

Equation 42

1

 
Figure 1. Model structure of the CEA of the RITA 3 trial (MI=myocardial infarction, CV=cardiovascular, 

CVD=cardiovascular death) [17]. 
 

Analysis of HRQoL 

HRQoL data were collected in patients in RITA 3 at randomization, 4 months, 1 year, and 
yearly thereafter, until the 5th year. To estimate QALYs for each treatment strategy, quality 
adjustment weights (utilities) were required. These were obtained from the trial sample using 
the EQ-5D instrument, and employing the preferences of the UK general population. A 
standard OLS regression was employed in order to estimate the mean HRQoL of patients with 
different risk profiles at randomization. A longitudinal data approach was then employed in 
order to estimate changes in HRQoL after randomization, differentiating between the two 
management strategies and whether a composite endpoint of CVD or MI had occurred. For 
the long-term extrapolation, no difference in HRQoL between the treatment strategies was 
assumed after the first year in patients not having experienced a composite endpoint. 

 

Covariates 

All statistical analyses included previously identified risk factors for cardiac events measured 
at randomization and randomized treatment. These risk factors were included as covariates in 
the statistical models and are shown in Table 1. 

Covariate Obs Mean (std.dev.) 
or proportion

Min Max

Age (cathegorical indicator for every 10 years 
over 60 years of age ) 1810 0.887 (0.849) 0 4

Diabetes (indicator of diabetes at study 
inclusion) 1810 0.135 (0.342) 0 1

Previous MI (indicator of previous MI at study 
inclusion) 1810 0.277 (0.447) 0 1

Smoker (indicator of smoker at study inclusion) 1810 0.324 (0.468) 0 1

Pulse (discrete indicator for every 5 beats per 
minute) 1809 7.451 (2.778) 2 20

ST depression (indicator of ST depression at 
study inclusion) 1810 0.365 (0.481) 0 1

Angina (indicator of angina grade 3 or 4 at 
study inclusion) 1809 0.359 (0.480) 0 1

Male (indicator of male) 1810 0.623 (0.485) 0 1
Left BBB (indicator of left bundle branch block 
at study inclusion) 1810 0.035 (0.185) 0 1

Treat (indicator of randomized to early 
interventional strategy) 1810 0.494 (0.500) 0 1

Risk score (risk of CVD or MI) 1807 0.194 (0.127) 0.034 0.860  
Table 1. Baseline covariates included in the statistical models. 
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3.2 Applying the Bayesian hierarchical approach 
As mentioned in section 2.3, multilevel or hierarchical models are considered the appropriate 
approach to obtain unbiased estimates of aggregate measures. Therefore, to determine the 
rates of CVD or non-fatal MI during the index hospitalisation and the remainder of the trial 
follow-up period, a series of Bayesian hierarchical regressions, accounting for within and 
between centres variability were estimated. These estimates of effectiveness provided sets of 
location-specific TPs which can be incorporated into location-specific CE models, which will 
help decision making about allocation of resources at the local level. 

In the original study the CE of the intervention was assessed in different risk groups (5 risk 
groups) to determine whether the gain in health outcomes justified the increase in costs. 
However, due to the main objectives of this work and also due to practicality issues, the focus 
here was made on the first baseline risk group (risk group 1) and also only evidence obtained 
from the RITA 3 trial was used (in the original analysis meta-analytic techniques were also 
used in order obtain a combined effectiveness measure which informed some effectiveness 
model input parameters). 

Table A1 in appendixTable  presents summary data of the covariates included in the regression 
models by centre. In total, 1810 patients were included in the study distributed across 46 
centres (hospitals). The distribution of patients across centres is unbalanced, with a minimum 
of 1 patient observed in centre 18 and a maximum of 153 in centre 11. The average number of 
patients per centre is approximately 39. For each covariate the mean value and the standard 
deviation (std. dev.) are presented. A simple inspection of the summary data by location 
reveals a great deal of variability in covariates, both within and across the centres. 

 

3.2.1 Software 

To implement the proposed analysis, the hierarchical regression models were performed in 
the freely available software package R version 2.7.2 (Copyright © 2009 The R Foundation 
for Statistical Computing) and in the also freely available software package 
WinBugs/OpenBugs version 3.0.3 (Copyright © 2007 Medical Research Council (UK), 
Imperial College (UK) and RNI Helsinki (Finland)) and compared to the Stata results from 
the original study (Stata version 9.0 – Stata statistical software – StataCorp LP).  

The Bayesian hierarchical models were implemented using WinBugs/OpenBugs and linked to 
the software R through two important R packages: R2WinBugs/BRugs and CodaPkg. 
Bayesian MCMC methods were employed with one chain and through a simulation process 
with 5,000 iterations and a 2,000 iteration burn-in period (except for HRQoL where a 20,000 
iteration burn-in period, with several thin rate scenarios tested, was performed due to 
encountered convergence problems). 

The decision-analytic model was programmed and analysed in R and compared to the original 
model performed in Microsoft® Excel (Microsoft Corporation 2003, Redmond, Washington, 
USA). 

 

3.2.2 Results for effectiveness 

 

Equation 1 

A logistic regression model was used to estimate the risk of the combined endpoint of CVD or 
MI during the index hospitalisation in the short-term decision tree. The Bayesian hierarchical 
logistic regression model was implemented and to obtain the relevant TPs (probability of 
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composite endpoint during index admission for conservative and treatment group), from 
equation 1, the inverse logit transformation was used [14]. 

Logistic regression

CCIndex

Covariate coef.* std. err. Pr(>|z|) mean* std. dev. mean* std. dev.
Fixed Effects
         Treat 0.417 0.288 0.148 0.425 0.294 -0.143 1.008 0.386 0.308 -0.223 0.980

         Age 0.549 0.161 0.001 0.554 0.162 0.243 0.874 0.576 0.165 0.260 0.913

         Angina 0.636 0.284 0.025 0.635 0.287 0.068 1.195 0.627 0.286 0.064 1.202

         Constant -4.622 0.334 0.000 -4.671 0.338 -5.355 -4.039 -4.841 0.392 -5.680 -4.159
Random Effects
         σTreat - - - - - - - 0.198 0.244 0.012 0.866

         σCnst - - - - - - - 0.432 0.370 0.011 1.176

         ρTreat_Cnst - - - - - - -

*Values in log odds ratios

**5,000 iterations and a 2,000 iteration burn-in period

R - NHM WinBugs** - NHM WinBugs** - HM

95% CrI 95% CrI

0.00142

 
Table 2. Log-odds ratio of composite endpoint of CVD or MI during index hospitalisation (NHM – non-

hierarchical model; HM – hierarchical model).  

 

Data on the Bayesian hierarchical model can be found in columns 9 to 12 in Table 2. 
Information on between-centre variability, σCnst, the treatment random-effect component, 
σTreat, and the correlation between the random components, ρTreat_Cnst, are presented in the three 
bottom rows. The same framework was used in subsequent models. 

Compared to the non-hierarchical models, the fixed-effects estimates from the hierarchical 
model are similar in terms of magnitude, sign and significance of estimates. It can be 
identified a decrease on the intercept and treatment estimates (fixed effects), a reflection of 
the decomposition of the effects in both fixed and random components. The empirical 
correlation estimate between the random components is considered weak. 

The results are similar and consistent across software’s, showing that increasing age and 
severe angina (grade 3 or 4) are associated with an increased risk of a composite endpoint 
during the index hospitalisation. Although not statistically significant, the early interventional 
strategy is associated with an increased risk of a composite endpoint during the index 
hospitalisation (frequentist estimates: odds ratio of 1.517 with p-value = 0.148; Bayesian 
estimates: odds ratio of 1.530, not sig. at usual levels; Bayesian hierarchical estimates: odds 
ratio of 1.471, not sig. at usual levels). 

The centre-specific random-effects components are shown in Table 3. For simplicity, since 
there are 46 centres in the trial, here is reported only the random-effects for treatment and 
intercept of 5 specific centres. These are centres with sample sizes of 17, 153, 65, 94 and 110 
respectively, and have been selected to explore the impact of sample size on the model 
results. It can be observed the differences in the random estimates within and across centres, 
reflecting the variability within and between-centres of the risk of a composite endpoint 
during the index hospitalisation. 



-  P l e a s e  d o  n o t  q u o t e  w i t h o u t  a u t h o r ’ s  a p p r o v a l  -  

 

13 | P a g e     P a p e r  p r e s e n t e d  a t  A P E S  c o n f e r e n c e ,  P o r t o  2 0 0 9  

Logistic regression

CCIndex

Centre mean std. dev.
Random Effects
u1j - Treat -0.019 0.305 -0.682 0.555

u0j - Cnst -0.103 0.529 -1.365 0.901

u1j - Treat 0.092 0.292 -0.289 0.954

u0j - Cnst 0.057 0.361 -0.710 0.886

u1j - Treat -0.077 0.317 -0.928 0.391

u0j - Cnst -0.146 0.436 -1.267 0.643

u1j - Treat -0.030 0.261 -0.686 0.504

u0j - Cnst 0.122 0.390 -0.585 1.103

u1j - Treat -0.024 0.243 -0.641  0.463

u0j - Cnst 0.382 0.490 -0.196 1.517
**5,000 iterations and a 2,000 iteration burn-in period

WinBugs** - HM

95% CrI

centre 11

centre 23

centre 2

centre 40

centre 37

 
Table 3. Centre specific random effects for 5 centres in the trial, results of Bayesian hierarchical logistic 
regression of composite endpoint of CVD or MI during index hospitalisation (HM – hierarchical model). 

 

Equation 2 

To estimate the risk of the combined endpoint of CVD or MI during the remainder of the trial 
period, a time-to-event Weibull PHM was employed with the starting time set at hospital 
discharge. The Bayesian hierarchical Weibull regression model was implemented according 
to the following framework: assuming that survival times are Weibull distributed, the 
regression coefficients β were believed a priori to follow independent Normal distributions 
with zero mean and vague precision 0.0001. The shape parameter γ for the survival 
distribution was given a Gamma(1, 0.0001) prior, which is slowly decreasing on the positive 
real line. 

The TPs needed to populate the long-term Markov structure were derived from the results of 
the statistical models, for which the yearly TP of a composite endpoint in Markov cycle t, 
tp(t), is given by ( ) 1 exp( ( 1) )i ix xtp t e t e tβ βγ γ= − − − . 

The non-hierarchical models show that all risk factors, except presence of severe angina, were 
significant at the 5% level (Table 4). However, this risk factor was very close to significance 
and was kept in the parametric model. The fact that the shape parameter in the Weibull 
proportional hazards regression model is less than 1 indicates that the rate of the composite 
endpoint of CVD or MI declines as time elapses from hospital discharge. The early 
interventional strategy was associated with a statistically significant lower rate of CVD or MI 
after the index hospitalisation (frequentist estimates: log-hazard ratio -0.477, 95% CI [-0.767;-
0.186]; Bayesian estimates: log-hazard ratio -0.477, 95% CrI [-0.770;-0.159]; Bayesian 
hierarchical estimates: log-hazard ratio -0.527, 95% CrI [-0.899;-0.228]).  

The results of the Bayesian hierarchical model were similar to the non-hierarchical ones. 
Compared to the NHMs, the fixed-effects estimates obtained were equivalent or vaguely 
smaller. In addition to severe angina risk factor, gender was found to be non-significant but 
very close to the assumed significance level. The random-effect standard deviation of the 
treatment effect is large in magnitude, balanced by a lower treatment fixed-effect. A negative 
but small correlation between the random components was found. 
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Parametric proportional hazards model - Weibull regression

Covariate coef.* std. err. Pr(>|z|) mean* std. dev. mean* std. dev.
Fixed Effects
         Age 0.575 0.087 0.000 0.567 0.087 0.397 0.731 0.563 0.088 0.390 0.736

         Diabetes 0.645 0.173 0.000 0.634 0.181 0.271 1.004 0.634 0.174 0.284 0.954

         Previous MI 0.386 0.154 0.012 0.382 0.159 0.074 0.682 0.387 0.149 0.095 0.679

         Smoker 0.501 0.160 0.002 0.496 0.170 0.157 0.834 0.481 0.161 0.140 0.779

         Pulse 0.060 0.024 0.014 0.060 0.025 0.005 0.109 0.052 0.022 0.011 0.096

         St depression 0.357 0.149 0.016 0.361 0.144 0.086 0.650 0.357 0.146 0.059 0.630

         Angina 0.280 0.149 0.060 0.279 0.158 -0.030 0.583 0.268 0.145 -0.017 0.562

         Male 0.316 0.158 0.045 0.329 0.148 0.038 0.624 0.292 0.161 -0.004 0.634

         Left BBB 0.682 0.268 0.011 0.649 0.272 0.089 1.174 0.678 0.267 0.121 1.176

         Treat -0.477 0.148 0.001 -0.477 0.154 -0.770 -0.159 -0.527 0.175 -0.899 -0.228

         Constant -4.790 0.302 0.000 -4.837 0.308 -5.440 -4.230 -4.699 0.333 -5.334 -4.100

         Shape parameter (γ) 0.579 0.070 - 0.597 0.038 0.519 0.666 0.582 0.041 0.510 0.668
Random Effects
         σTreat - - - - - - - 0.206 0.187 0.011 0.667

         σCnst - - - - - - - 0.057 0.050 0.009 0.194

         ρTreat_Cnst - - - - - - -

*Values in log hazard ratios

**5,000 iterations and a 2,000 iteration burn-in period

95% CrI 95% CrI

-0.0314

R - NHM WinBugs** - NHM WinBugs** - HM

 
Table 4. Log-hazard ratio of composite endpoint of CVD or MI from hospital discharge until end of trial (NHM – 

non-hierarchical model; HM – hierarchical model).  

 

The centre-specific random-effects components estimates for the 5 centres under analysis can 
be found in the appendix section (appendix – Table A2). 

 

Equation 3 

As mentioned before, equation 2 was used to estimate the risk of a second composite endpoint 
by updating the covariate for prior MI. Equation 3 coefficient estimates were derived from 
equation 2 after update. 

The Bayesian hierarchical Weibull regression model implemented followed the same 
framework has the previous survival model. 

 

Equation 4 

All the events reported in the RITA trial (comprising a total of 244 first events and 17 second 
events) were included in the logistic regression model estimating the probability of a 
composite endpoint being non-fatal. 

The results are similar and coherent across software’s, showing that this probability was 
higher during the index hospitalisation than during the follow-up period, reflecting the fact 
that patients are likely to receive treatment without delay if they experience an MI whilst in 
hospital (Table 5). The Bayesian logistic regression model implemented followed the same 
framework has the previous hierarchical logit model. 
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Logistic regression

Non-fatal MI

Covariate coef.* std. err. Pr(>|z|) mean* std. dev. mean* std. dev.
Fixed Effects
         Index dummy 1.162 0.314 0.000 1.195 0.322 0.577 1.820 1.202 0.318 0.599 1.831

         Age -0.347 0.146 0.017 -0.356 0.147 -0.644 -0.069 -0.366 0.151 -0.668 -0.077

         Previous MI -0.595 0.264 0.024 -0.604 0.266 -1.124 -0.088 -0.614 0.269 -1.155 -0.091

         Constant 0.235 0.248 0.344 0.240 0.249 -0.252 0.725 0.255 0.255 -0.228 0.769
Random Effects
         σCnst - - - - - - - 0.135 0.125 0.011 0.463

*Values in log odds ratios

**5,000 iterations and a 2,000 iteration burn-in period

WinBugs** - HM

95% CrI 95% CrI

R - NHM WinBugs** - NHM

 
Table 5. Log- odds ratio of a composite endpoint of CVD or MI being non-fatal (NHM – non-hierarchical model; 

HM – hierarchical model).  

 

Compared to the non-hierarchical models, the results for the hierarchical model show similar 
results in terms of magnitude, sign and significance of estimates. An increase in the intercept 
fixed effect estimates is identified. The centre-specific random-effects components are shown 
in the appendix.  

 

3.2.3 Results for costs 

Cost regression 1 - Estimated costs during the index hospitalisation 

Despite the skewed behaviour of cost data and the non-negative value constraint, the original 
model for costs during the index hospitalisation was based on a multiple linear regression 
which did not take account of these characteristics. The dependent variable was regressed 
against a set of covariates, result from a backward stepwise covariate selection procedure.  

The non-hierarchical models demonstrate similar results, showing that during the index 
hospitalisation, the early interventional strategy was associated with a higher mean cost 
(frequentist estimates: mean £5,654, 95% CI [£5,151;£6,157]; Bayesian estimates: mean 
£5,652, 95% CrI [£5,145;£6,159]; Bayesian hierarchical estimates: mean £5,881, 95% CrI 
[£5,146;£6,632]) compared with a conservative strategy (Table 6). This additional cost was 
seen as a result of a higher number of angiographies and revascularizations undertaken in the 
early interventional arm. After controlling for treatment allocation, a non-fatal MI or death 
was associated with additional costs of approximately £6,200 and £7,900, respectively, which 
included the costs for the administration of thrombolytic drugs, revascularisations and longer 
hospital stay in wards and intensive care. 

As in the NHMs, HM covariates such as age, sex, and ST depression were also associated 
with higher costs during the index hospitalisation. The correlation between the random 
components was found to be negative and relatively high. The centre-specific random-effects 
components are shown in the appendix section (appendix - Table A4). 
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Linear model

Costs index

Covariate coef. std. err. Pr(>|z|) mean std. dev. mean std. dev.
Fixed Effects
         MI index 6221.2 972.1 0.000 6228.6 993.8 4266.1 8230.1 6236.7 942.0 4332.4 8050.7

         Dead index 7947.4 1229.4 0.000 7921.5 1211.9 5577.1 10312.0 7874.8 1197.7 5539.0 10219.5

         Treat 5653.9 256.4 0.000 5652.4 259.8 5144.5 6159.0 5881.3 376.1 5145.6 6631.8

         Male 1034.8 264.6 0.000 1039.2 263.7 513.6 1557.4 1131.0 258.7 624.0 1638.4

         Age 878.3 152.6 0.000 876.4 152.0 577.3 1175.8 877.3 152.0 583.8 1176.3

         ST depression 1224.4 268.1 0.000 1228.6 267.7 706.0 1764.5 1080.3 269.6 543.5 1605.2

         Constant 1778.5 295.3 0.000 1773.8 291.2 1216.0 2355.4 1882.6 329.9 1235.0 2542.9

Random Effects

         σε - - - - - - - 5215.7 89.0 5048.3 5395.7

         σTreat - - - - - - - 1729.1 362.4 1073.5 2478.3

         σCnst - - - - - - - 941.6 233.9 511.6 1448.1

         ρTreat_Cnst - - - - - - -

**5,000 iterations and a 2,000 iteration burn-in period

-0.20164

R - NHM WinBugs** - NHM WinBugs** - HM

95% CrI 95% CrI

 
Table 6. Estimated costs during the index hospitalisation (NHM – non-hierarchical model; HM – hierarchical 

model).  

 

Cost regression 2 - Estimated costs during the follow-up period 

The non-hierarchical models demonstrated similar results, showing that during the first year 
after the index hospitalisation, the early interventional strategy was associated with a lower 
mean cost (frequentist estimates: mean -£1,106, 95% CI [-£1,562;-£650]; Bayesian estimates: 
mean -£1,112, 95% CrI [-£1,570;-£657]; Bayesian hierarchical estimates: mean -£1,104, 95% 
CrI [-£1,588;-£614]) compared with the conservative strategy (Table 7). This reflected the 
fact that more patients in the conservative strategy had further symptoms that necessitated 
revascularization during this period.  

The results also indicated that patients had a substantially higher mean cost, irrespective of 
treatment allocation, if they suffered a MI within the previous year (frequentist estimates: 
mean £5,467, 95% CI [£3,880; £7,020]; Bayesian estimates: mean £5,446, 95% CrI 
[£3,883;£7,019]; Bayesian hierarchical estimates: mean £5,444, 95% CrI [£3,871;£7,001]) or 
prior to the trial (frequentist estimates: mean £724, 95% CI [£210; £1,240]; Bayesian 
estimates: mean £717, 95% CrI [£212;£1,238]; Bayesian hierarchical estimates: mean £694, 
95% CrI [£170;£1,208]). 

Compared to the non-hierarchical models, the results for the Bayesian hierarchical model 
show that fixed-effects estimates are very similar. Centre-specific random-effects components 
can be found in the appendix section. 
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Linear model

Costs follow-up exc.MI/stroke

Covariate coef. std. err. Pr(>|z|) mean std. dev. mean std. dev.
Fixed Effects
         MI year 1 5467.1 804.0 0.000 5445.9 796.6 3882.9 7019.1 5444.4 804.8 3871.1 7000.5

         Treat -1106.1 232.6 0.000 -1112.0 231.5 -1570.3 -657.0 -1103.9 246.7 -1587.7 -614.0

         Male 586.2 242.2 0.016 580.7 240.7 102.8 1039.9 603.3 242.2 127.9 1074.4

         Angina 1033.8 246.9 0.000 1040.1 247.9 545.9 1528.7 951.3 247.6 468.1 1439.8

         Previous MI 724.4 262.4 0.006 717.1 263.7 211.5 1238.4 694.1 263.6 169.9 1207.7

         Constant 2734.9 247.6 0.000 2741.2 246.8 2256.0 3230.8 2786.4 269.9 2259.4 3313.9
Random Effects
         σε - - - - - - - 4793.7 81.0 4636.9 4958.3

         σTreat - - - - - - - 474.8 159.0 243.3 856.1

         σCnst - - - - - - - 614.7 164.3 329.0 978.0

         ρTreat_Cnst - - - - - - -

**5,000 iterations and a 2,000 iteration burn-in period

0.07732

WinBugs** - HM

95% CrI 95% CrI

WinBugs** - NHMR - NHM

 
Table 7. Estimated costs during the follow-up period (NHM – non-hierarchical model; HM – hierarchical model).  

 

3.2.4 Results for HRQoL 

HRQoL regression 1 - Estimated baseline utilities 

A regression model of EQ-5D at baseline was built to give starting QoL estimate for the 
population under consideration, assuming the trial sample is representative of the target 
population.  

At randomization, mean HRQoL (in terms of 0 to 1 utilities) were higher for males whereas 
diabetes, previous MI, ST depression and angina were associated with lower HRQoL (Table 
8). Similar results were obtained for the different software’s. 

The Bayesian normal linear regression model with non-informative priors implemented 
followed the same framework has the previous Bayesian linear models. To account for not 
only within but also between-centre variability, a Bayesian hierarchical model was built 
incorporating a random intercept component. Except for diabetes and presence of previous 
MI, the results for the hierarchical model show now slightly higher mean estimates and also 
lost statistical significance. The centre-specific random-effects components are shown in the 
appendix section (appendix - Table A6). 
 

Linear model

HRQoL baseline

Covariate coef. std. err. Pr(>|z|) mean std. dev. mean std. dev.
Fixed Effects
         Diabetes -0.050 0.021 0.016 -0.051 0.021 -0.091 -0.009 -0.036 0.019 -0.074 0.003

         Previous MI -0.045 0.016 0.006 -0.045 0.016 -0.078 -0.014 -0.021 0.015 -0.050 0.009

         ST depression -0.066 0.015 0.000 -0.067 0.015 -0.096 -0.038 -0.031 0.014 -0.058 -0.003

         Angina -0.074 0.015 0.000 -0.073 0.015 -0.104 -0.043 -0.073 0.014 -0.100 -0.045

         Male 0.072 0.015 0.000 0.072 0.015 0.043 0.101 0.079 0.014 0.053 0.106

         Constant 0.693 0.015 0.000 0.693 0.015 0.665 0.722 0.662 0.024 0.615 0.710
Random Effects
         σε - - - - - - - 0.271 0.005 0.262 0.280

         σCnst - - - - - - - 0.128 0.017 0.099 0.164

         ρTreat_Cnst - - - - - - -

**5,000 iterations and a 2,000 iteration burn-in period

-0.03515

R - NHM

95% CrI 95% CrI

WinBugs** - NHM WinBugs** - HM

 
Table 8. Estimated baseline utilities (NHM – non-hierarchical model; HM – hierarchical model).  
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HRQoL regression 2 - Estimated gain in HRQoL 

The original model was fitted using generalized least squares random-effects estimators, 
where binary covariates were included to represent whether the utility measure was taken at 
month 4 (D4) or subsequently (D12) and an interaction term for treatment group. Changes in 
utility at one year were maintained until the end of the follow up period, for patients who do 
not experience a MI. Binary covariates were also included to indicate whether a MI had 
occurred recently (that is, within 1 year prior to the time of the follow up interview) (current 
MI) and a covariate indicating whether a MI had occurred at all prior to the time of the 
follow-up interview, either before or during the trial (prior MI).  

The number of patients with EQ-5D data in the follow-up period was 1,734 and the number of 
observations was 6,203 indicating that each patient on average had their HRQoL measured 
3.5 times. Table 9 shows the results for the multilevel model considering the individual as a 
cluster, named non-centre hierarchical model (NCHM), and also, in columns 9 to 12, the 
hierarchical model with time clustered in patients and patients nested in health care centres 
(centre hierarchical model (CHM)). Table 9 supplies the within-patient standard error and the 
between-patient standard error. 

Longitudinal data

Change HRQoL

Covariate coef. std. err. Pr(>|z|) mean std. dev. mean std. dev.
Fixed Effects
         D4  x Treat 0.039 0.017 0.020 0.043 0.016 0.012 0.074 1.307 0.017 1.274 1.341

         D12 0.038 0.008 0.000 0.015 0.008 -0.001 0.032 0.015 0.009 -0.001 0.035

         D12  x Treat 0.018 0.016 0.238 0.024 0.015 -0.005 0.053 1.287 0.010 1.266 1.306

         Prior MI -0.010 0.016 0.521 -0.018 0.016 -0.049 0.013 -0.020 0.012 -0.044 0.002

         Current MI -0.035 0.022 0.109 -0.029 0.022 -0.074 0.014 -0.031 0.023 -0.081 0.009

         Constant 0.044 0.013 0.001 0.040 0.012 0.015 0.063 0.028 0.022 -0.010 0.075
Random Effects
         σε 0.033 - - 0.174 0.002 0.169 0.179 0.174 0.002 0.169 1.78

         σCnst_patient 0.089 - - 0.003 0.000 0.003 0.004 0.003 0.000 0.003 0.004

         σTreat_centre - - - - - - - 1.281 0.137 1.042 1.577

         σCnst_centre - - - - - - - 0.117 0.020 0.085 0.161

         ρTreat_Cnst_centre - - - - - - -

**5,000 iterations and a 2,000 iteration burn-in period

WinBugs** - NCHM WinBugs** - CHM

95% CrI 95% CrI

R - NCHM

0.03867

 
Table 9. Estimated gain in HRQoL (NCHM – non-centre hierarchical model; CHM – centre hierarchical model).  

 

The R model results are similar, however, the estimates differ in magnitude and significance 
from the NCHM obtained in WinBugs due to chain convergence problems. Despite the efforts 
to improve convergence, by increasing the burn-in period or by changing the thinning rate, 
auto-correlation was still evident. Therefore, an improvement in the original model’s 
covariate structure is recommended. 

However, the results for the NCHM reveal that in both treatment strategies HRQoL was 
improved at 4 months although an incremental gain of the early interventional strategy 
compared with the conservative strategy was observed. Between 4 and 12 months, HRQoL 
was improved further in both treatment strategies, although the incremental gain of the early 
interventional strategy is non-significant, at the common levels of significance. A recent MI 
was associated with a decrement in HRQoL regardless of treatment allocation and a previous 
MI prior to study inclusion was associated with a smaller HRQoL decrement, but, 
nevertheless, also both non-significant at the usual significance levels. 

The Bayesian hierarchical model considering the centre variability shows more problems of 
chain convergency. The results differ substantially compared to the other models, especially 
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for the interaction D4treat with treatment covariate and the interaction with treatment group 
variable for utility measured at and after 12 months, D12treat. These changes may be due to 
the referred omitted variable and the chain convergence problems. Therefore, any 
interpretation of this model estimates should be performed with caution.  

These statements are supported by the estimate for the standard error of the centre-level 
treatment random-effect, σTreat_centre (mean of approximately 1.280, 95% CrI 1.042 – 1.577). 
The considerably high value of the estimate reflects the presence of unexplained variability 
that is being captured here. The centre-specific intercept random-effects components are 
shown in the appendix. 
 

3.2.5 Cost-effectiveness 

The expected (mean) costs and health outcomes of both strategies were combined into an 
ICER, which is interpreted as the additional cost of generating an additional unit of health 
outcome (QALY). Many health care systems compare the ICER with a threshold value (λ) to 
establish whether the strategy should, in principle, be recommended for implementation. 
NICE in the UK uses a threshold of around £20,000 per QALY gained. Cost-effectiveness 
was estimated over patients’ lifetimes using a UK health service perspective. 

 

Location-specific cost-effectiveness results 

Figure 2 illustrates the joint CE density plotted on the Cost Effectiveness Plane (CEP) for 5 of 
the centres (hospitals) in the RITA 3 trial, namely centres 2, 11, 23, 37 and 40. In the figure, 
the presence of the trial wide results is for comparison reasons. It can be observed that in all 
centre-specific CEP plots the majority of the simulation results are located in the NE 
quadrant, indicating the same conclusion of the trial wide results: more effective intervention 
strategy than the comparator, but at higher costs. 

The centre-specific CEPs show higher variability in mean differential cost estimates 
compared to the trial wide results. For instance, centre 2 CEP depicts a range in mean 
differential costs from approximately £0 to £8,000, with an estimated average of 
approximately £4,950. The inclusion of only 17 patients in this centre may be an explanation 
for the evident large uncertainty attached to the cost estimates. In centre 37 (94 patients), the 
mean differential cost estimates are on average higher than the trial wide and also higher than 
other centre estimates (average of approximately £7,750, 95% CrI £6,040 - £9,465). See 
Table 10 for details on mean differential costs, mean differential QALYs and ICERs at the 
trial wide and at the centre level. 

The centre-specific CEP plots also show high variability of mean differential QALY 
estimates, with longer left tail estimate distribution compared to the trial wide results. For all 
centre-specific CEPs one can observe that the majority of the simulated results are 
concentrated in the range of 0 and 0.2 values of the incremental QALY estimates.  
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Figure 2. Cost-effectiveness planes of the RITA 3 model with trial wide results and centre-specific results for 

centres 2, 11, 23 37 and 40, respectively. 

 

Δ Costs (£) Δ QALYs

(95% CrI) (95% CrI)
6,418 0.155

(5,426 ; 6,753) (-0.058 ; 0.268)
4,949 0.120

(2,286 ; 7,612) (-0.129 ; 0.368)
3,551 0.090

(2,002 ; 5,100) (-0.214 ; 0.394)
5,879 0.132

(3,985 ; 7,773) (-0.092 ; 0.356)
7,752 0.111

(6,039 ; 9465) (-0.158 ; 0.381)
5,951 0.086

(4,370 ; 7,532) (-0.272 ; 0.444)
centre 40

Trial wide

41,239

39,458

44,539

69,830

69,168

ICER 
(£/QALY)

41,406

centre 2

centre 11

centre 23

centre 37

 
Table 10. Trial wide and centre-specific estimated differential costs and QALYs (95% credibility intervals) and 

ICERs estimates (centres 2, 11, 23, 37 and 40, respectively). 

 

Similar features are revealed in terms of the Cost Effectiveness Acceptability Curves 
(CEACs) for these 5 centres (Figure 3). Once again, the curves display great variability across 
centres (hospitals) in CE for given values of the threshold, λ. This variability appears greatest 
at the values of λ ranging from £20,000 to £60,000, although caution is required here as this 
observation is based on only those selected centres displayed. For example, the probability of 
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the intervention strategy being cost-effective, at a ceiling ratio of £50,000, is approximately 
0.65 applying the trial wide results with single-level specification. The corresponding 
probability for centre 37 is 0.34 and for centre 40 is 0.43. The observed maximum probability 
that the intervention is cost-effective for centre 40 is approximately, 0.66 (at λ = £140,000). 
For centre 23, the maximum is 0.82 (at λ = £140,000). For values of λ greater than £34,000, 
the intervention strategy would probably be considered cost-effective based on the results of 
centre 11. However, for values of λ less than £70,000, the intervention strategy would 
probably not be considered cost-effective based on patient cost and outcomes reported for 
centre 37. 

 
Figure 3. Cost-effectiveness acceptability curve for the trial wide results and centre-specific results for centres 2, 

11, 23 37 and 40, respectively. 

 

4 Discussion 
This paper has demonstrated the significance of Bayesian hierarchical modelling to estimate 
cluster-specific parameters for use in DAMs where IPD from a multi-location trial are 
available. The case-study was based on a multicentre trial in one country, but the methods are 
equally applicable to the analysis of multinational trials to produce country-specific CE 
estimates.  

The work here presented is still an ongoing project and all results should be considered as 
preliminary. However, this paper has established, through the use of one illustrative example, 
how a multicentre trial-based CE analysis may be implemented within a Bayesian framework 
and evaluated using Gibbs sampling MCMC methods in the software package WinBUGS. 
The potential advantages of this type of approach are that it (a) removes the need to make 
parametric distributional assumptions over the obtained parameter distribution (the posterior 
distributions for each parameter); (b) prior beliefs may be easily incorporated; and (c) may 
allow a single coherent model to be developed which facilitates the incorporation of all 
available sources of evidence (whether from RCTs, observational studies and/or expert 
opinion) to evaluate the CE of alternative interventions. 

The ‘two-stage’ approach may be considered easier to implement than a ‘one-stage’ decision 
model, as it splits the analysis into data synthesis and model evaluation, and specialist 
spreadsheet packages (such as Microsoft Excel) providing a more user-friendly environment 
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for implementing the latter. However, the main advantage of the suggested modelling 
approach compared to a ‘two-stage’ approach is that it allows a single coherent model to be 
developed to evaluate the CE of alternative interventions. 

The extent to which the use of Bayesian hierarchical modelling is decisive in a particular 
study depends on the proportion of overall variability in CE that takes place between 
locations. The limitation of regression results obtained from fixed effect models is that they 
are only valid within the sample of locations that participated in the study. In contrast, random 
effect models have the property that allows them to be generalisable to the centres outside the 
study sample that share similar characteristics with the level-2 units participating in the trial. 

The analyses presented here can be extended in six important ways. The first would be to 
rethink the variable selection procedure to be used in the regression models, particularly the 
backward stepwise selection framework, performed in most of the original models. As 
mentioned in Judd et al [22], given that the data analyst knows more about the data than a 
computer algorithm, better models can be produced by a better understanding of the data. 

The second extension proposed to the framework presented here is to consider the data 
characteristics in terms of range and skewness. Just as the choice of distribution for 
probability data was based upon the range of data, cost data are constrained to be non 
negative and are usually highly skewed. Therefore one should employ the Log-Normal or the 
Gamma distributions to reflect the skewness often found in cost data, and apply generalised 
linear mixed models for the analysis of multicentre / multinational cost data. 

The third proposed extension to the work presented here is the fact that one should account 
for the imbalances in baseline utility in the estimation of mean differential HRQoL. The non-
inclusion of the baseline utility covariate in the models can result in misleading CE estimates 
because baseline utility is likely to be strongly related to utility at follow-up, and 
consequently should be controlled for in estimating differential HRQoL. HRQoL estimates 
are, therefore, sensitive to small imbalances in mean baseline utilities between the arms of the 
trials. In addition, given that baseline utilities usually enter directly into the HRQoL 
calculation, they should represent a strong predictor of HRQoLs [25]. 

Forthly, alter the short-term part of the decision model to a unique multinomial logit 
framework. Fifthly, perform sensitivity analysis over obtained parameter estimates by using a 
variety of non-informative and perceived informative priors. And finally, integrate the extra 
sources of evidence present in the original model (i.e. evidence from meta-analysis) in the 
present Bayesian decision model using the promoted framework. 
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6 Appendix 
 

Centre
Obs 
(nj)

Age        
mean (std.dev.)

Diabetes    
mean (std.dev.)

Previous 
MI         

mean (std.dev.)

Smoker     
mean (std.dev.)

Pulse       
mean (std.dev.)

ST 
depression  
mean (std.dev.)

Angina     
mean (std.dev.)

Male       
mean (std.dev.)

Left BBB   
mean (std.dev.)

Treat       
mean (std.dev.)

Risk score   
mean (std.dev.)

1 39 0.74  (0.81) 0.12  (0.33) 0.15  (0.36) 0.43  (0.50) 7.51  (3.21) 0.41  (0.49) 0.48  (0.50) 0.64  (0.48) 0.00  (-) 0.51  (0.50) 0.18  (0.10)
2 17 0.94  (0.89) 0.11  (0.33) 0.17  (0.39) 0.35  (0.49) 7.00  (1.83) 0.41  (0.50) 0.35  (0.49) 0.82  (0.39) 0.00  (-) 0.47  (0.51) 0.19  (0.11)
3 101 0.80  (0.82) 0.16  (0.37) 0.31  (0.46) 0.32  (0.47) 8.26  (2.66) 0.61  (0.48) 0.45  (0.50) 0.60  (0.49) 0.06  (0.25) 0.50  (0.50) 0.21  (0.12)
4 21 0.76  (0.88) 0.19  (0.40) 0.33  (0.48) 0.47  (0.51) 8.61  (2.57) 0.33  (0.48) 0.42  (0.50) 0.52  (0.51) 0.04  (0.21) 0.47  (0.51) 0.18  (0.11)
5 32 1.34  (0.86) 0.12  (0.33) 0.25  (0.44) 0.18  (0.39) 7.21  (2.53) 0.53  (0.50) 0.31  (0.47) 0.71  (0.45) 0.06  (0.24) 0.50  (0.50) 0.26  (0.16)
6 33 0.63  (0.78) 0.00  (0.00) 0.21  (0.41) 0.48  (0.50) 6.48  (2.69) 0.12  (0.33) 0.54  (0.50) 0.84  (0.36) 0.00  (-) 0.45  (0.50) 0.15  (0.08)
7 84 1.29  (0.84) 0.09  (0.29) 0.16  (0.37) 0.16  (0.37) 8.39  (3.45) 0.44  (0.49) 0.31  (0.46) 0.58  (0.49) 0.04  (0.21) 0.50  (0.50) 0.23  (0.14)
8 42 0.88  (0.80) 0.19  (0.39) 0.33  (0.47) 0.21  (0.41) 6.47  (3.03) 0.28  (0.45) 0.42  (0.50) 0.59  (0.49) 0.04  (0.21) 0.45  (0.50) 0.18  (0.12)
9 21 0.90  (0.88) 0.04  (0.21) 0.28  (0.46) 0.47  (0.51) 9.47  (3.23) 0.28  (0.46) 0.42  (0.50) 0.47  (0.51) 0.09  (0.30) 0.52  (0.51) 0.24  (0.16)

10 6 0.33  (0.51) 0.16  (0.40) 0.66  (0.51) 0.66  (0.51) 6.83  (3.18) 0.50  (0.54) 0.33  (0.51) 0.33  (0.51) 0.00  (-) 0.50  (0.54) 0.17  (0.09)
11 153 0.84  (0.83) 0.11  (0.32) 0.23  (0.42) 0.44  (0.49) 7.32  (2.46) 0.29  (0.45) 0.26  (0.44) 0.63  (0.48) 0.01  (0.11) 0.50  (0.50) 0.17  (0.10)
12 38 0.60  (0.67) 0.26  (0.44) 0.42  (0.50) 0.44  (0.50) 7.44  (2.36) 0.13  (0.34) 0.50  (0.50) 0.65  (0.48) 0.02  (0.16) 0.47  (0.50) 0.19  (0.10)
13 14 0.71  (0.72) 0.21  (0.42) 0.28  (0.46) 0.50  (0.51) 6.42  (2.10) 0.42  (0.51) 0.71  (0.46) 0.42  (0.51) 0.00  (-) 0.42  (0.51) 0.18  (0.09)
14 65 0.96  (0.86) 0.12  (0.33) 0.26  (0.44) 0.26  (0.44) 8.26  (3.26) 0.44  (0.50) 0.16  (0.37) 0.60  (0.49) 0.03  (0.17) 0.49  (0.50) 0.20  (0.13)
15 33 0.72  (0.76) 0.15  (0.36) 0.18  (0.39) 0.45  (0.50) 6.75  (2.65) 0.06  (0.24) 0.39  (0.49) 0.57  (0.50) 0.00  (-) 0.51  (0.50) 0.16  (0.11)
16 53 0.75  (0.83) 0.11  (0.32) 0.15  (0.36) 0.47  (0.50) 7.01  (2.52) 0.28  (0.45) 0.30  (0.46) 0.69  (0.46) 0.00  (-) 0.50  (0.50) 0.15  (0.09)
17 72 0.83  (0.75) 0.18  (0.38) 0.40  (0.49) 0.30  (0.46) 7.15  (2.60) 0.77  (0.41) 0.58  (0.49) 0.66  (0.47) 0.05  (0.23) 0.50  (0.50) 0.23  (0.15)
18 1 0.00  (-) 0.00  (-) 0.00  (-) 0.00  (-) 10.0  (-) 0.00  (-) 0.00  (-) 0.00  (-) 0.00  (-) 0.00  (-) 0.08  (-)
19 45 0.66  (0.73) 0.08  (0.28) 0.31  (0.46) 0.35  (0.48) 6.57  (2.12) 0.06  (0.25) 0.42  (0.49) 0.68  (0.46) 0.02  (0.14) 0.48  (0.50) 0.15  (0.11)
20 78 0.78  (0.84) 0.07  (0.26) 0.19  (0.39) 0.30  (0.46) 7.78  (3.32) 0.51  (0.50) 0.21  (0.41) 0.60  (0.49) 0.01  (0.11) 0.50  (0.50) 0.17  (0.13)
21 77 0.80  (0.76) 0.23  (0.42) 0.35  (0.48) 0.41  (0.49) 7.53  (2.70) 0.37  (0.48) 0.19  (0.39) 0.66  (0.47) 0.02  (0.16) 0.49  (0.50) 0.19  (0.12)
22 23 1.00  (0.73) 0.21  (0.42) 0.30  (0.47) 0.17  (0.38) 8.65  (2.79) 0.34  (0.48) 0.21  (0.42) 0.52  (0.51) 0.08  (0.28) 0.52  (0.51) 0.20  (0.17)
23 65 1.32  (1.01) 0.13  (0.34) 0.30  (0.46) 0.23  (0.42) 6.80  (2.12) 0.23  (0.42) 0.26  (0.44) 0.66  (0.47) 0.01  (0.12) 0.49  (0.50) 0.21  (0.15)
24 21 0.95  (0.92) 0.04  (0.21) 0.38  (0.49) 0.19  (0.40) 6.61  (2.50) 0.33  (0.48) 0.38  (0.49) 0.52  (0.51) 0.09  (0.30) 0.47  (0.51) 0.19  (0.12)
25 10 0.30  (0.48) 0.00  (0.00) 0.20  (0.42) 0.40  (0.51) 8.30  (2.75) 0.20  (0.42) 0.60  (0.51) 0.40  (0.51) 0.10  (0.31) 0.70  (0.48) 0.11  (0.04)
26 31 0.83  (0.86) 0.25  (0.44) 0.29  (0.46) 0.29  (0.46) 8.09  (3.20) 0.32  (0.47) 0.38  (0.49) 0.64  (0.48) 0.06  (0.25) 0.45  (0.50) 0.19  (0.15)
27 10 1.10  (0.87) 0.20  (0.42) 0.30  (0.48) 0.30  (0.48) 7.80  (1.54) 0.50  (0.52) 0.10  (0.31) 0.60  (0.51) 0.00  (-) 0.50  (0.52) 0.20  (0.13)
28 27 0.85  (0.86) 0.07  (0.26) 0.33  (0.48) 0.18  (0.39) 7.07  (2.26) 0.37  (0.49) 0.59  (0.50) 0.74  (0.44) 0.00  (-) 0.51  (0.50) 0.19  (0.13)
29 17 1.00  (0.93) 0.11  (0.33) 0.23  (0.43) 0.29  (0.47) 7.58  (3.37) 0.52  (0.51) 0.11  (0.33) 0.52  (0.51) 0.00  (-) 0.47  (0.51) 0.19  (0.13)
30 64 0.68  (0.61) 0.17  (0.38) 0.35  (0.48) 0.42  (0.49) 6.96  (2.46) 0.54  (0.50) 0.34  (0.48) 0.57  (0.49) 0.04  (0.21) 0.50  (0.50) 0.18  (0.10)
31 12 0.91  (0.90) 0.08  (0.28) 0.41  (0.51) 0.25  (0.45) 6.08  (1.78) 0.33  (0.49) 0.50  (0.52) 0.50  (0.52) 0.00  (-) 0.50  (0.52) 0.19  (0.19)
32 55 1.38  (1.11) 0.07  (0.26) 0.18  (0.38) 0.16  (0.37) 6.92  (2.23) 0.23  (0.42) 0.49  (0.50) 0.50  (0.50) 0.03  (0.18) 0.49  (0.50) 0.21  (0.14)
33 29 0.93  (0.88) 0.06  (0.25) 0.31  (0.47) 0.31  (0.47) 7.62  (2.93) 0.55  (0.50) 0.24  (0.43) 0.62  (0.49) 0.00  (-) 0.48  (0.50) 0.19  (0.10)
34 10 0.40  (0.69) 0.10  (0.31) 0.50  (0.52) 0.30  (0.48) 9.30  (3.49) 0.20  (0.42) 0.40  (0.51) 0.60  (0.51) 0.00  (-) 0.50  (0.52) 0.15  (0.05)
35 13 1.30  (1.03) 0.07  (0.27) 0.15  (0.37) 0.38  (0.50) 5.76  (1.53) 0.23  (0.43) 0.53  (0.51) 0.76  (0.43) 0.00  (-) 0.46  (0.51) 0.21  (0.12)
36 19 1.00  (0.74) 0.21  (0.41) 0.26  (0.45) 0.36  (0.49) 7.42  (3.35) 0.68  (0.47) 0.42  (0.50) 0.42  (0.50) 0.21  (0.41) 0.52  (0.51) 0.23  (0.16)
37 94 0.96  (0.79) 0.19  (0.39) 0.28  (0.45) 0.25  (0.43) 7.55  (2.76) 0.37  (0.48) 0.23  (0.42) 0.56  (0.49) 0.02  (0.14) 0.50  (0.50) 0.18  (0.11)
38 31 0.93  (0.81) 0.09  (0.30) 0.25  (0.44) 0.22  (0.42) 7.67  (2.91) 0.29  (0.46) 0.16  (0.37) 0.64  (0.48) 0.03  (0.18) 0.45  (0.50) 0.17  (0.09)
39 5 1.20  (0.83) 0.40  (0.54) 0.40  (0.54) 0.20  (0.44) 7.60  (2.60) 0.20  (0.44) 0.60  (0.54) 0.80  (0.44) 0.20  (0.44) 0.40  (0.54) 0.27  (0.20)
40 110 0.79  (0.75) 0.12  (0.33) 0.24  (0.43) 0.28  (0.45) 7.50  (2.81) 0.19  (0.39) 0.39  (0.49) 0.59  (0.49) 0.04  (0.20) 0.50  (0.50) 0.16  (0.10)
41 24 0.58  (0.83) 0.16  (0.38) 0.37  (0.49) 0.45  (0.50) 7.62  (2.14) 0.29  (0.46) 0.37  (0.49) 0.66  (0.48) 0.12  (0.33) 0.50  (0.51) 0.20  (0.15)
42 39 0.79  (0.83) 0.10  (0.30) 0.30  (0.46) 0.15  (0.36) 7.05  (2.62) 0.25  (0.44) 0.69  (0.46) 0.66  (0.47) 0.05  (0.22) 0.46  (0.50) 0.18  (0.09)
43 37 0.73  (0.76) 0.10  (0.31) 0.32  (0.47) 0.32  (0.47) 7.67  (3.07) 0.45  (0.50) 0.18  (0.39) 0.86  (0.34) 0.00  (-) 0.51  (0.50) 0.19  (0.13)
44 8 0.50  (1.06) 0.00  (0.00) 0.00  (0.00) 0.50  (0.53) 6.50  (2.13) 0.12  (0.35) 0.50  (0.53) 0.62  (0.51) 0.12  (0.35) 0.62  (0.51) 0.12  (0.08)
45 21 1.00  (1.04) 0.00  (0.00) 0.23  (0.43) 0.38  (0.49) 6.90  (2.36) 0.23  (0.43) 0.52  (0.51) 0.71  (0.46) 0.04  (0.21) 0.47  (0.51) 0.20  (0.16)
46 10 1.40  (1.07) 0.10  (0.31) 0.50  (0.52) 0.20  (0.42) 6.90  (3.03) 0.10  (0.31) 0.40  (0.51) 0.50  (0.52) 0.00  (-) 0.40  (0.51) 0.23  (0.20)  

Table A1. Covariates included in the statistical models by centre. 
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Weibull regression

Centre mean std. dev.
Random Effects
u1j - Treat 0.021 0.258 -0.506 0.649

u0j - Cnst -0.007 0.076 -0.178 0.146

u1j - Treat 0.082 0.300 -0.275 0.608

u0j - Cnst 0.003 0.066 -0.145 0.157

u1j - Treat -0.043 0.239 -0.639 0.426

u0j - Cnst 0.010 0.070 -0.124 0.179

u1j - Treat -0.131 0.269 -0.861 0.235

u0j - Cnst -0.007 0.067 -0.171 0.129

u1j - Treat 0.021 0.213 -0.402 0.527

u0j - Cnst 0.005 0.071 -0.143 0.182
**5,000 iterations and a 2,000 iteration burn-in period

centre 37

centre 40

centre 2

centre 23

centre 11

95% CrI

WinBugs** - HM

 
Table A2. Random effects components of 5 centres, results of Bayesian hierarchical Weibull PHM of composite 

endpoint of CVD or MI from hospital discharge until end of trial (HM – hierarchical model). 

 

Logistic regression

Non-fatal MI

Centre mean std. dev.
Random Effects

         centre 2 u0j - Cnst -0.011 0.178 -0.436 0.346

         centre 11 u0j - Cnst -0.014 0.154 -0.389 0.302

         centre 23 u0j - Cnst 0.065 0.187 -0.203 0.582

         centre 37 u0j - Cnst -0.012 0.163 -0.409 0.323

         centre 40 u0j - Cnst -0.058 0.177 -0.549 0.200
**5,000 iterations and a 2,000 iteration burn-in period

95% CrI

WinBugs** - HM

 
Table A3. Random effects components of 5 centres, results of Bayesian hierarchical logistic regression of 

composite endpoint of CVD or MI being non-fatal (HM – hierarchical model). 

Linear model

Costs index

Centre mean std. dev.
Random Effects
u1j - Treat -855.9 1333.2 -3585.8 1645.5

u0j - Cnst -586.9 801.8 -2220.6 934.5

u1j - Treat -2261.3 821.9 -3891.6 -670.6

u0j - Cnst -1219.1 555.7 -2335.3 -176.3

u1j - Treat 39.4 975.2 -1869.4 1943.4

u0j - Cnst -0.361 616.7 -1231.9 1220.4

u1j - Treat 1905.5 876.7 193.4 3610.6

u0j - Cnst 178.2 567.7 -932.9 1304.1

u1j - Treat 128.1 817.5 -1450.9 1745.5

u0j - Cnst -175.2 539.6 -1254.1 838.2
**5,000 iterations and a 2,000 iteration burn-in period

centre 37

centre 40

centre 2

centre 23

centre 11

WinBugs** - HM

95% CrI

 
Table A4. Random effects components of 5 centres, results of Bayesian hierarchical linear regression of costs 

during the index hospitalisation (HM – hierarchical model). 
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Linear model

Costs follow-up exc.MI/stroke

Centre mean std. dev.
Random Effects
u1j - Treat 103.7 483.3 -833.4 1154.7

u0j - Cnst 95.8 546.1 -952.9 1175.6

u1j - Treat -7.320 397.5 -799.8 775.7

u0j - Cnst -142.2 372.5 -892.4 587.1

u1j - Treat 76.8 440.3 -750.6 966.7

u0j - Cnst -133.5 442.1 -1013.0 733.6

u1j - Treat -209.2 422.6 -1121.6 580.0

u0j - Cnst -144.8 417.8 -972.8 669.8

u1j - Treat 30.39 412.0 -774.2 874.0

u0j - Cnst -358.9 405.0 -1184.6 392.3
**5,000 iterations and a 2,000 iteration burn-in period

centre 37

centre 40

centre 2

centre 23

95% CrI

centre 11

WinBugs** - HM

 
Table A5. Random effects components of 5 centres, results of Bayesian hierarchical linear regression of costs 

during the follow-up period (HM – hierarchical model). 

 

Linear model

HRQoL baseline

Centre mean std. dev.

Random Effects

         centre 2 u0j - Cnst -0.102 0.062 -0.224 0.018

         centre 11 u0j - Cnst 0.131 0.030 0.072 0.189

         centre 23 u0j - Cnst -0.071 0.038 -0.145 0.003

         centre 37 u0j - Cnst 0.046 0.034 -0.019 0.112

         centre 40 u0j - Cnst 0.141 0.033 0.077 0.203

**5,000 iterations and a 2,000 iteration burn-in period

WinBugs** - HM

95% CrI

 
Table A6. Random effects components of 5 centres, results of Bayesian hierarchical linear regression of baseline 

utilities (HM – hierarchical model). 

Longitudinal data

Change HRQoL

Centre mean std. dev.

Random Effects

u1j - Treat_centre -1.103 0.130 -1.360 -0.858

u0j - Cnst_centre 0.111 0.075 -0.032 0.262

u1j - Treat_centre -1.320 0.047 -1.412 -1.232

u0j - Cnst_centre -0.090 0.037 -0.162 -0.0155

u1j - Treat_centre -1.191 0.070 -1.337 -1.059

u0j - Cnst_centre 0.056 0.048 -0.037 0.147

u1j - Treat_centre -1.333 0.056 -1.448 -1.225

u0j - Cnst_centre -0.019 0.043 -0.099 0.072

u1j - Treat_centre -1.333 0.056 -1.448 -1.225

u0j - Cnst_centre -0.065 0.041 -0.149 0.016
**5,000 iterations and a 2,000 iteration burn-in period

centre 40

centre 2

WinBugs** - CHM

centre 11

centre 37

centre 23

95% CrI

 
Table A7. Random effects components of 5 centres, results of Bayesian hierarchical  

panel data regression of the gain in HRQoL (HM – hierarchical model). 

 


