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Abstract 

 The discernment of relevant factors driving health care utilization 
constitutes one important research topic in Health Economics. This issue is 
frequently addressed through specification of regression models for health 
care use (y – often measured by number of doctor visits) including, among 
other covariates, a measure of self-assessed health (sah). However, the exo-
geneity of sah within those models has been questioned, due to the possible 
presence of unobservables influencing both y and sah, and because individu-
als’ health assessments may depend on the quantity of medical care received. 
 This paper addresses the possible simultaneity of (sah,y) by adopting 
a full information approach, through specification of the bivariate probability 
function (p.f.) of these discrete variables, conditional on a set of exogenous 
covariates (x). The approach is implemented with copula functions, which af-
ford separate consideration of each variable margin and their dependence 
structure. The specification of the joint p.f. of (sah,y) enables estimation of 
several quantities of potential economic interest, namely features of the con-
ditional p.f. of y given sah and x. The adopted models are estimated through 
maximum likelihood, with cross-section data from the Portuguese National 
Health Survey of 1998/99. Estimates of the margins parameters do not vary 
much among different copula models, while, in accordance with theoretical 
expectations, the dependence parameter is estimated to be negative across the 
various joint models. 
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1. Introduction 

 

The area of health economics has witnessed a steady increase in research activity over 

the last decades. To some extent, this growing interest can be seen as a consequence 

of the volume and continuous rise of health care expenditures in most industrialized 

countries, Portugal included.( 1 ) Not surprisingly, the modelling and estimation of 

medical care demand functions has constituted an important research topic in this 

area, namely with a view to discern the impact of such factors as price, income or 

health insurance status on health care utilization. Seminal work on these issues can be 

found in Newhouse, Phelps and Marquis (1980), and Wagstaff (1989), who were 

among the first to survey the econometric analysis of medical care demand. The esti-

mation of demand functions has been frequently addressed through specification of 

regression models for health care use, often represented by a count, y, measuring the 

number of doctor visits.(2) Most of the regression models discussed in the literature 

include, besides other covariates (here denoted as x), an indicator of self-assessed 

health (sah), which is usually found to be a relevant regressor for the dependent vari-

able of interest. 

 Frequently, these models are estimated by use of methods that rely on the as-

sumption of regressors’ exogeneity, sah included. Some authors, however, have cast 

doubt on the exogeneity of sah within such models, due to the accepted fact that indi-

viduals’ health assessments are, to a significant extent, both subjective and influenced 

by the quantity of medical care previously received. Concern about the use of sah-

type covariates in demand equations was detailed by Manning, Newhouse and Ware 

(1982), who advocate treating sah as endogenous in regressions for cross-section data 

on health care utilization, with consequential use of instrumental variables (see Man-

ning, et al., 1982, p. 166). The issue has also been raised more recently, namely in, 

Windmeijer and Santos Silva (1997), Lourenço (2007b), and Van Ourti (2004). 

 As is well known, recognizing sah as endogenous within count data regres-

sions, calls for estimation strategies, namely nonlinear instrumental variables (NLIV) 

                                                 
(1)    In Portugal, according to the OECD Health Data (2006), the total expenditures on health, as share 
of GDP, increased from 7.3% in 1994 to 10.1% in 2004. 
(2)    Among many other examples, use of count data models in health economics can be found in Jones 
and O'Donnell (2002), Bago d'Uva (2006), Lourenço, Quintal, Ferreira and Barros (2007a), Deb and 
Trivedi (1997, 2002), and Winkelmann (2004). 
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or generalized method of moments (GMM), that require valid instruments (see, e.g. 

Cameron and Trivedi 1998, ch. 11). When no such variables are available – or when 

the endogeneity of sah is neglected – researchers often take to one of two avenues: 

either to exclude sah from the regression or to adopt a nonrobust estimation method – 

usually nonlinear least squares (NLS) or conditional maximum likelihood (ML). 

Clearly, either choice involves a considerable risk of producing inconsistent estimates 

– not only of the parameter associated with sah, but of all regression parameters asso-

ciated with covariates not orthogonal to sah. 

 This paper addresses the likely simultaneity of ( )sahy,  and its associated con-

sequences by specifying the joint probability function (p.f.) of ( )sahy, , conditional on 

a set of exogenous regressors (x). This full information approach can be implemented 

using copula functions (Sklar 1959). One advantage of copulas is that they enable 

separate consideration of the marginal distribution for each dependent variable, as 

well as their dependence structure. This flexibility makes it possible for researchers to 

capture the dependence structure of the data without knowing the exact form of the 

joint p.f., while, at the same time, preserving desirable characteristics of the chosen 

marginals for the response variables. 

 Modelling the joint (conditional) distribution of ( )sahy, , given x, constitutes a 

full information alternative to the more conventional approach of specifying a struc-

tural equation, or a set of structural simultaneous equations, linking the endogenous 

variables ( )sahy,  to a set of exogenous covariates, x (as, e.g., in Windmeijer and San-

tos Silva 1997). Instead of specifying these structural equations, one can conceivably 

think of the joint probability law of ( ) xsahy   , , and try to model it by making use of 

the copula theory insight. 

 It should be noted, however, that this proposed alternative approach may not 

afford a mapping between the conventional structural parameters – namely the causal 

effect of sah on utilization – and the parameters of the joint p.f. of ( )sahy, , given x. 

This suspicion is fuelled in the present context by the fact that y is usually a discrete 

random variable and, as detailed below, sah is often treated as a rank variable. 

Clearly, their joint p.f. is far from bivariate normal, a situation in which, with suitable 

assumptions, one is usually able to trace back structural parameters from the parame-

ters of the joint p.f. of endogenous variables. Indeed, an enquiry into the identification 
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possibilities of the proposed methodology in the present context, as it relates to lim-

ited information approaches, is beyond the scope of the present text and would 

deserve a separate paper on its own. 

 In any case, the suggested approach enables identification of several entities of 

interest, such as features of the conditional p.f.’s (of either endogenous variable, given 

the other and x), including, e.g., the conditional expectation ( )xsahyE , , for different 

sah values. This constitutes a prominent example of quantities of potential economic 

interest, representative of the influence of the individual’s health status on medical 

care utilization. Naturally, one can think of other relevant quantities identified by the 

present approach, such as income-elasticities of (average) utilization, or the assess-

ment of the effect of supplementary health insurance on average health care use. The 

suggested methodology is rich enough to permit the measurement of different quanti-

ties, according to specific research interests. 

 The paper is organized as follows. Section two details the main problem and 

surveys alternative econometric methodologies to deal with it. Section three presents 

the specification of models for the joint conditional p.f. of ( )sahy, , suggesting its 

estimation through ML. This section also includes a very brief account of copula the-

ory, setting the general framework for the proposed specifications. Section four 

introduces the empirical application of the present methodology, describing the data 

used for estimation, a cross-section sample taken from the Portuguese National Health 

Survey (NHSur) of 1998/99. Section five presents and comments on estimation re-

sults. Finally, section six concludes the paper. 

 

 

2. The Problem 

 

2.1 Endogeneity 

 

 As previously mentioned, the possible endogeneity of sah variables in regres-

sion models for health care utilization poses relevant research issues. Formally, 

endogeneity (of sah) is referred to here according to the following, well established, 

definition (see Cameron and Trivedi 1998, ch. 11): denote the joint conditional p.f. of 

( )sahy,  given x, as ( )θ;|, xsahyf . The usual factorization has 
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( ) ( ) ( )221 ;|;,|;|, θθθ xsahfxsahygxsahyf = , 
 

where ( )21,θθθ ≡  denotes a parameter vector. If the marginal p.f. of sah depends on 

1θ , estimating the parameters 1θ  by conditioning y on sah does not yield consistent 

estimates. In this case, sah is said to be endogenous. 

 Why can sah be endogenous? Two main arguments are usually invoked, that 

help explain the plausibility of this concern. The first reason is the possible existence 

of unobservables that condition individual self-assessments and, at the same time, 

influence the use of health care. Such factors as individual cultural background, per-

sonality characteristics or some dimensions of unmeasured health, like mental and 

social health (Jurges 2007) are difficult to measure (hence, not included in the regres-

sion model) and likely to influence both the dependent variable and self-judgements. 

Take, for instance, the case of a hypochondriac individual (usually a characteristic not 

accounted for): by definition, such a person will tend to display negative feelings to-

wards his/her own health, probably rating it worse than it actually is. At the same 

time, he/she may also present a clear predisposition to visit the doctor often. In this 

case, the assumption of independence between sah and unobservables influencing y 

beyond the effect of observed covariates does not hold. 

 The endogeneity of sah may also be due to simultaneity of this variable and y. 

It is noted that, under the scheme adopted to collect the data used in this paper, indi-

viduals evaluate their own health state after visiting the doctor. Expectably, in these 

visits they acquire objective information that allows them to revise, thus update, their 

views about their own health.(3) Therefore, it is reasonable to suppose that individuals’ 

health assessments are, to some extent, determined by the quantity of medical care 

recently received, which gives rise to the simultaneity of sah and y in the classical 

demand equation.  

 

2.2 Econometric Choices 

 

 As previously mentioned, some authors have raised the concern of possible 

endogeneity of sah in models for health care use – see, e.g., Windmeijer and Santos 

Silva (1997), Lourenço (2007b) and Van Ourti (2004). Each of these authors adopts a 
                                                 
(3)    This information is considered to be objective, because it is provided by the doctor, possibly based 
on diagnostic tests, like lab tests, x-rays, etc.. 
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different methodological course in face of this issue. While in Lourenço (2007b) sah 

is simply excluded from the regression model, the opposite is proposed in Van Ourti 

(2004), with sah included in the set of regressors, alongside with remaining covari-

ates. As previously mentioned, both NLS and ML estimates are likely to be 

inconsistent, due to either omission of a potentially relevant regressor (Lourenço 

2007b) or possible misspecification of the model for the conditional expectation, 

( )xsahyE ,|  (Van Ourti 2004). Windmeijer and Santos Silva (1997), in turn, do take 

into account the possible endogeneity of sah, resorting to GMM techniques to esti-

mate a regression model for the number of visits to the doctor by individuals. 

 Addressing endogeneity within a limited information framework usually re-

quires the availability of instrumental variables. Windmeijer and Santos Silva (1997) 

suggest using, as instruments, variables that influence health in the long run, e.g., 

variables which reflect behavioural attitudes like smoking- and drinking-related vari-

ables. Valid instruments are also required for the Hausman test of endogeneity, 

comparing NLIV to NLS or quasi-ML estimates (see, e.g., Grogger 1990). 

 One alternative to the foregoing approaches is to adopt a full information 

strategy, specifying ( )xsahyf |,  and estimating the resulting model through likeli-

hood-based methods. This goal can be achieved using a particular class of cumulative 

distribution functions (c.d.f.’s) known as copulas. Essentially, a copula function is a 

joint c.d.f. whose marginals are uniform. In formal terms, the model for the joint con-

ditional c.d.f. of ( ) xsahy |,  can be expressed as 

 
   ( ) ( ) ( )( )xxsahFxyFCxsahyF ||,||, 21= ,   (1) 
 

where C is the copula, and F, F1 and F2 denote, respectively, the joint and marginal 

c.d.f.’s. For generality, the total set of conditioning covariates, x, is considered in the 

above expressions for these c.d.f.’s: formally, this poses no difficulty if the actual sets 

of covariates in each margin do not coincide. It simply means that exclusion restric-

tions (e.g., advocated by economic theory) are imposed. Later in the paper (as of 

section 3.2), the distinction between both sets of regressors is to be made explicit, 

with x denoting their respective reunion. 

 The notion of copula has been well known for some time in statistics. It was 

introduced in the literature by Sklar (1959), although the main idea dates back to 

Hoeffding (1940). Its application to the study of economic problems is a recent but 
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fast-growing field, namely in finance (see, e.g., Bouyé, Durrleman, Nikeghbali, Ri-

boulet and Roncalli 2000). Lee (1983), in one seminal paper, was the first to use 

copulas in econometrics, introducing the “normal copula” as an alternative to 

Heckman’s (1976) two-step procedure of modelling selectivity. General surveys on 

copulas can be found in Joe (1997), Nelsen (2006) and Trivedi and Zimmer (2006). 

 The area of health economics has also witnessed a recent but fast increase in 

the use of copulas. Smith (2003) applies copulas to the specification of models for 

health care data that may suffer from selectivity bias. Zimmer and Trivedi (2006) use 

trivariate copulas to specify a regression joint model for three discrete response vari-

ables. These are, respectively, two counted measures of health care use by spouses, 

and a binary variable of insurance status. Dancer, Rammohan and Smith (2008) adopt 

a similar methodology to assess the degree of dependence between infant mortality 

and child nutrition. Quinn (2007a) addresses the simultaneity of mortality risk, health 

and lifestyles with a reduced-form system of equations, using a copula to define the 

corresponding multivariate distribution. Other examples in the area of health econom-

ics and econometrics are mentioned in the excellent survey by Quinn (2007b). 

 A full information methodology can also be implemented by using a bivariate 

mixture model for the specification of ( )xsahyf |, . For instance, the joint p.f. of sah 

and y can be obtained upon mixing statistical independence, conditional on unob-

served heterogeneity. Formally, 

 
( ) ( ) ( ) ( )∫= εεεε dxhxsahfxyfxsahyf |,|,||, 21 ,         (2) 

 

where f1 and f2 represent the marginal p.f.’s and ε  denotes unobserved heterogeneity, 

with density h. Except for some particular cases, one disadvantage associated with 

this approach is that it generally leads to criterion functions without analytical expres-

sions, which require simulation-based or numerical approximation methods of 

maximization. On the other hand, such a specification enables the control of rich het-

erogeneity structures. 

 Actually, a mixture joint model can be given a copula interpretation, with the 

copula function implicitly defined by 

 

( ) ( )∑ ∑
≤ ≤

=
yi sahj

xjifxsahyF |,|, , 
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and f as in (2). The next section presents the specification of a mixture model that is 

used in the present application and details its interpretation as a copula-based model. 

 

 

3. Model Specification 

 

 This section presents models for the joint conditional p.f. of ( )sahy, , given a 

set of regressors. The section begins with a brief presentation of bivariate copulas, 

setting the general framework for the proposed copula-based models and subsequent 

empirical application. 

 

3.1 Copulas 

 

 The main finding of copula theory is the fact that the joint c.d.f. of a set of 

real-valued random variables (r.v.’s) can be separated into its marginal c.d.f.’s and a 

copula, describing their dependence structure. More precisely, an l-variate copula (or 

l-copula) is defined as the c.d.f. of a random l-vector with uniform marginal c.d.f.’s. 

In the bivariate case, a 2-copula is a function [ ] [ ]1,01,0: 2
aC  that satisfies the follow-

ing properties: 

i. For every ( ) [ ]221 1,0, ∈≡ uuu , 

 ( ) 0=uC , if at least one coordinate of u is zero; 

 ( ) ( ) [ ]1,0,1,,1 ∈== wwwCwC . 

ii. ( ) ( ) [ ] ( ) 0  ,2,1,  ,1,0,,, 1

1

2

2

2
2121 ≥ΔΔ=≤∈∀ vCjbabbaa b

a
b
ajj , where the two first-

order differences of the function C are defined, respectively, as 

( ) ( ) ( )2121 ,,1

1
vaCvbCvCb

a −≡Δ ,  ( ) ( ) ( )2121 ,,2

2
avCbvCvCb

a −≡Δ . 

Expression ( )uCb
a

b
a

1

1

2

2
ΔΔ  is naturally interpreted as ( )222111 ,Pr buabua ≤≤≤≤ . 

 If F is a bivariate c.d.f. with margins F1, F2, then, there exists a 2-copula C 

such that, for any random vector ( ) 2
21, Rzzz ∈≡ , 

 
( ) ( ) ( )( )221121 ,, zFzFCzzF = . 
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If F1, F2 are continuous, then C is unique; otherwise C is uniquely determined on 

21 RanFRanF ×  (Ran G denotes the range of the function G). Conversely, if C is a 2-

copula and F1, F2 are c.d.f.’s, then the function F defined above is a bivariate c.d.f. 

with marginal c.d.f.’s F1, F2. 

 The above statement is the bivariate version of what is known as Sklar’s theo-

rem. It demonstrates the role of copulas as the link between multivariate distributions 

and their univariate margins. The result essentially follows from the probability inte-

gral transformation, under which, for a continuous random variable w with c.d.f. F, 

( )wF  is uniformly distributed over the range ( )1,0 . The theorem enables the construc-

tion of a joint c.d.f., once the marginal c.d.f.’s and copula are available. 

 The copula is not unique if any of the marginal c.d.f.’s exhibits discontinuities 

– as is the case for discrete r.v.’s (see Joe 1997, p. 14, for details). Nevertheless, as 

Zimmer and Trivedi (2006, p. 64) point out, the non-uniqueness of copula in such 

cases is a theoretical issue that does not hinder its use in empirical applications. Find-

ing a unique copula representation rests on full knowledge of the joint c.d.f.. Now, 

one of the reasons why researchers use copulas is precisely the fact that they ignore 

the true form of the joint c.d.f.. Thus, once the researcher decides which marginals to 

adopt, the issue, for him, is one of finding a copula that is able to reflect the depend-

ence structure of the data while preserving desirable features of those marginals. 

 Given the purpose of the present paper, conditional c.d.f.’s and copulas must 

be considered. A bivariate conditional copula is a function [ ] [ ]1,01,0: 2
aC , such that, 

conditional on some set (name it H), C corresponds to the above definition of copula. 

Sklar’s theorem for conditional distributions leads to (see, e.g., Patton 2005) 

 
( ) ( ) ( )( )HHzFHzFCHzF ||,|| 2211= . 

 

 As previously mentioned, the copula describes the dependence structure of 

r.v.’s with a given joint c.d.f.. One trivial but important case is the bivariate product 

copula, ( ) 21uuu ≡Π , that results in case of independence. The close relationship be-

tween copulas and dependence is also reflected by the Fréchet-Hoeffding bounds 

inequality: for every copula C and every [ ]21,0∈u , it can be shown that (see, e.g., 

Nelsen 2006) 
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( ) { } ( ) { } ( )uMuuCuuuW 2212 min0 , 1max ≡≤≤−+≡ . 
 

In the bivariate case, both bounds are themselves copulas; the upper (lower) bound 

arises if and only if one r.v. is almost surely a strictly increasing (decreasing) trans-

formation of the other. Between the extremes of independence and monotone 

functional dependence many forms of dependence can be considered, that are de-

scribed by the properties of copulas. Besides the familiar notion of linear correlation, 

several dependence concepts and measures have been proposed in the literature (see 

Joe 1997, for an extended survey). For present purposes it suffices to distinguish 

“positive” from “negative” bivariate dependence – with positive dependence express-

ing the idea that “large” (or “small”) values of both r.v.’s tend to occur together, and 

negative dependence expressing the notion that “large” values of one r.v. tend to be 

associated with “small” values of the other. 

 In practice, marginal c.d.f.’s can be specified conditional on a set of regres-

sors, leading to a conditional copula representation for the joint (conditional) c.d.f. of 

the dependent r.v.’s of interest. In addition, the copula can include one or more pa-

rameters intended to capture the dependence between the univariate margins – 

usually, in the bivariate case, a single dependence parameter is used. 

 Interpreting the dependence parameter of a copula in the discrete case is not as 

straightforward as for continuous r.v.’s. In the latter case, the dependence parameter is 

frequently converted into a concordance measure, such as Kendall’s tau or Spear-

man’s rho, both defined on the interval [ ]1 , 1−  and independent of the functional form 

of the margins. However, as shown by several authors (e.g., Marshall 1996, Denuit 

and Lambert 2005), this is not so with discrete r.v.’s, for which these measures are no 

longer bounded on the above interval, and are sensitive to the choice of margins. Still, 

every copula defines a range of permissible values for its dependence parameter, 

thereby allowing for varying degrees of positive and/or negative dependence. Thus, a 

researcher should choose those families of copulas that best fit his intended applica-

tion, being able to capture the dependence pattern in the available data.   
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3.2 Model Specification 

 

 This section presents several alternative specifications for the conditional c.d.f. 

( )xsahyF |, . Starting with copula-based models, the bivariate probabilistic model can 

be generally expressed as in (1), 

 
( ) ( ) ( )( )δθθδθ ;,|,;|,;|, 222111 xsahFxyFCxsahyF = , 

 

where x represents the vector of all conditioning variables, 1x  and 2x  denote the vec-

tors of covariates in the margin of, respectively, y and sah  (including intercept terms 

in both x1 and x2), ( )''θ'θθ 21 ,≡  denotes the vector of the margins parameters, and δ  

represents a dependence parameter. 

 In the present application, y is a count variable with unbounded support. Fol-

lowing common practice (see Cameron and Trivedi 1998), the function ( )111 ;| θxyF  is 

specified as the c.d.f. of a negative binomial p.f. with conditional mean 

( ) ( )111 exp 'βxμy|xE y =≡  and variance ( ) 0  ,| 2
1 >+= ααμμ yyxyV . Formally, the 

marginal p.f. of y can be expressed as 

 

( ) ( )
( ) ( )

y

y

y

yy
yxyf ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++ΓΓ
+Γ

=
αμ

μ
αμ

α
α

αθ
α

1
;| 111 ,          (3) 

 

with ( )''β αθ ,11 ≡ . As is well known, this functional form allows for overdispersion in 

the data, with reference to the Poisson p.f. (which results for 0=α ), thereby provid-

ing considerable modelling flexibility. 

 The second dependent r.v., sah, is a rank variable ranging from 1 to 5. Again 

following established literature, its marginal p.f. is specified as ordered probit, condi-

tional on x2 (see e.g., Maddala 1983). Under this specification, 

 
( ) ( ) ( ) 5,,1  ,;|Pr 2222122 K=−Φ−−Φ== + j'x'xxjsah jj βλβλθ ,         (4) 

 

with Φ  denoting the standard normal c.d.f., ( )'λ''β ,22 ≡θ , ( )'52 ,, λλλ K≡ , −∞=1λ  

and ∞=6λ . From this it follows 

 



 12

   ( ) =222 ;| θxjF  

( ) ( )
( ) . 5,,1  , 

;|Pr;|Pr

221

1 2222

K=−Φ

===≤

+

=∑
j'βxλ

xksahxjsah

j

j

k
θθ

  

As usual, identification requires a normalization, such as 0, for the intercept in 2β  or 

one of the λ' s. 

 The next step towards full specification of the c.d.f. of ( ) xsahy   ,  consists on 

the choice of copula. In the present context, y and sah may well tend to move in oppo-

site directions, thereby producing negative dependence in the data. This suggests the 

convenience of choosing a copula that allows for both positive and negative depend-

ence. Several choices are possible, that satisfy this requirement. 

 Already referred to, the normal copula can be written as 

 
( ) ( ) ( )( )

( ) ( )
( )( )

,1    ,
12
2exp12

;,;,
1

1
2

1

2

221
2

2
1

1
1

221

<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−
−−

=ΦΦΦ=

∫ ∫
− −Φ

∞−

Φ

∞−

−

−−

δ
δ

δδπ

δδ
u u

dvdwwvwv

uuuuC

 
 

where 2Φ  and 1−Φ  denote, respectively, the bivariate normal c.d.f. with zero mean 

vector, unit marginal variances and correlation coefficient δ , and the quantile func-

tion of the standard normal c.d.f.. Another example, involving two dependence 

parameters, is provided by the Student’s t copula, formally expressed as 

 
( )

( ) ( )
( )( )

,1  ,    ,
12
2112

,;,
1

1
2

1 21

2

221
2

21

<∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−
+−

=

∫ ∫
− −

∞− ∞−

−−
−

δγ
δ

δδπ

δγ
γ γ γ

N
ut ut

dvdwwvwv

uuC

 
 

where 1−
γt  denotes the quantile function of the Student’s t c.d.f. with γ  degrees of 

freedom, and δ  denotes the correlation coefficient. The γ  parameter determines the 

thickness of the tails (the smaller the value of γ , the heavier the tails); as +∞→γ , 

the t copula tends to the normal copula. Both functions nest the independence copula 

(for 0=δ ) and allow for positive ( 0>δ ) as well as negative ( 0<δ ) dependence. In 

addition, both copulas attain the upper and lower Fréchet-Hoeffding bounds, as, re-

spectively, 1→δ  and 1−→δ . Another shared feature of both copulas is the fact that 
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they involve quantile functions of absolutely continuous c.d.f.’s (standard normal and 

t). Consequently, if, as in the present context where y and sah are discrete, the mar-

ginal c.d.f.’s are not strictly monotonous (therefore, not injective) functions of their 

respective arguments, ML estimation of the joint c.d.f. parameters can actually be-

come arduous, even under theoretically identified models and with considerable 

sample sizes. Thus, particularly with discrete marginals and heavily parameterized 

models, the above two copulas may not be the more tractable functions to work 

with.(4) 

 Among few other cases allowing for negative dependence (see, e.g., Joe 1997, 

ch. 5.1), two of the most frequently encountered in the literature are the Frank copula 

(Frank 1979) and the Farlie-Gumbel-Morgenstern (FGM) copula, first proposed by 

Morgenstern (1956). Formally, these copulas can be written, respectively, as 

 
 Frank Copula 

( )
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 FGM copula 
( ) ( )( )( ) 1    ,111;, 212121 ≤−−+= δδδ uuuuuuC .       (6) 

 

 Again, both functions nest the independence copula, which results for 0=δ . 

Positive and negative dependence occur with, respectively, 0>δ  and 0<δ . The 

Frank copula attains the Fréchet-Hoeffding upper and lower bounds, under, respec-

tively,  ∞→δ  and −∞→δ . Despite its simplicity, the FGM copula is more 

restrictive, in that the dependence parameter is bounded on [ ]1 , 1−  and does not lead 

to either Fréchet-Hoeffding bound. 

 Let ( ) ( ) ( )( )221121 |,|, xsahFxyFuu = . Then, ( )xsahyF |,  immediately results 

by plugging ( )11 | xyF  and ( )22 | xsahF  into (5) or (6). 

 The joint conditional p.f. of ( )sahy,  can also be expressed as a bivariate mix-

ture model. Under this approach, conditional on x and unobserved heterogeneity, 

( )21,εεε ≡ , ( )sahy,  are assumed independent, with the above conditional margins: 

( )11,| εxy  is distributed as in (3), but now ( ) ( )11111 'exp,| εβε += xxyE , and 

                                                 
(4)    See, however, Van Ophem (1999), who uses the normal copula to analyze dependence within a 
bivariate count data model. 
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( ) ( ) ( ) 5,,1  ,'';,|Pr 2222221222 K=−−Φ−−−Φ== + jxxxjsah jj εβλεβλθε . Then, 

with ( )21,εε  assumed bivariate normal, independent of the regressors, with null mean 

vector, common variance, 2σ , and correlation coefficient δ , the model results as 

 

         
( )
( ) ( ) ( ) ,,;,|;,|

,,;|,

2121,22221111

2

2∫
=

εεεεφθεθε

δσθ

δσ
ddxsahfxyf

xsahyf
            (7) 

 

where δσ
φ ,2  denotes the bivariate normal density with parameters ( )δσ ,,0 2 . 

 This formulation is equivalent to a model with random intercepts in f1 and f2. 

The assumption of Gaussian heterogeneity is common in the literature (see, e.g., Train 

2003). Although estimation is computationally demanding, requiring simulation-

based methods or numerical approximations, the specification leads to easily inter-

pretable parameters, namely the dependence parameter, δ . Within this framework, 

independence can easily be checked with the usual statistical tests. The assumptions 

of common variance and independence from regressors do not seem unreasonable in 

the present context and add to computational convenience; other schemes can be con-

sidered, such as random coefficients, varying dispersion parameters and/or 

dependence with respect to regressors. However, the usefulness of such sophistica-

tions in the present context is questionable, namely in view of the added estimation 

difficulty they are bound to represent. In any case, it is noted that two correlated het-

erogeneity terms are allowed for, instead of a shared term in f1 and f2. In the present 

context, these terms can naturally be seen as correlated unobserved heterogeneity in-

fluencing both y and sah. The assumption is also useful because it enables 

discernment of negative from positive dependence in the data (through the sign of δ ), 

not just whether or not there is dependence (as the case would be with just one term). 

 As previously mentioned, the mixture model can be given a copula interpreta-

tion. In this case, the function C in (1) is defined as 
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where Fk , ,2,1=k  now denote the marginal c.d.f.’s given ( )kkx ε, , and Π  denotes the 

(conditional) independence copula. 

 

3.3 Estimation 

 

 Maximum likelihood (ML) estimation of the above models requires the joint 

p.f. of ( )sahy, , given x, ( )xsahyf |, . Under copula-based models for continuous re-

sponse variables this is obtained as the second-order derivative of the copula, that is 

(conditioning on x is omitted), 
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where ( ) ( ) ( )( )221121 ,, zFzFuu ≡ . In the present case, involving discrete r.v.’s, 

( )xzzf |, 21  is formed by taking differences. Formally, 

( )
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ). 1,11,,1,
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 Then, upon the choice of copula, the individual contribution to the log-

likelihood is formed by taking the logarithm of this last expression. After simultane-

ous ML estimation of all the parameters, variances of the estimates are obtained 

through the robust sandwich formula. It is noted that, defined as before, all the copu-

las referred to above are differentiable to order two at any particular value of δ , 

within its admissible range, so independence can be assessed with the usual likeli-

hood-based tests. 

 Estimation of model (7) requires either maximum simulated likelihood (MSL) 

or numerical approximation. The former is used here, with (7) being approximated by 

direct Monte Carlo (MC) integration, that is, 

 

( ) ( ) ( )∑
=

≈
S

s

ss xsahfxyf
S

xsahyf
1

22221111
2 ;,|;,|1,,;|, θεθεδσθ ,     (8) 
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where ( )ss
21 ,εε , Ss ,,1K=  denote random draws from the bivariate normal, δσ

φ ,2 , and 

S is the number of draws. Gouriéroux and Monfort (1991) show that, under regularity 

conditions, the MSL estimator has the same asymptotic distribution as the ordinary 

ML estimator, provided that 0→Sn  as ∞→Sn,  (n denotes sample size). The 

number of draws used in the application of the present paper is selected ad hoc, 

mostly for reasons of computational convenience, on the basis of rough comparisons 

between results for various S values. 

 
 

4. Data, Variables and Summary Statistics 

 

 The described approach is now applied to cross-sectional data on ( )sahy,  and 

a set of regressors, x, taken from the NHSur. In this application, different models of 

the joint p.f. of ( )sahy,  are estimated, from which the average effects, ( )xsahyE ,|  , 

are evaluated. These average effects are also compared to the corresponding estimates 

obtained from mainstream conditional models for the p.f. of ( )xsahy ,  . 

 The NHSur, which collected the data used in this study, took place in 

1998/99.(5) The survey gathered information on a representative sample from the non-

institutionalized population residing in Portugal mainland, covering 48,606 individu-

als belonging to, roughly, 20,000 households. The information collected in the cross-

section dataset includes individuals’ socio-demographic and economic characteristics 

(age, sex, marital status, educational attainment, activity status, income, place of resi-

dence, health insurance status), health status (self-assessed health, chronic conditions, 

functional status, etc.), medical care utilization (number of doctor visits in a three 

month period) as well as some variables reflecting individuals’ lifestyles, potentially 

affecting health (tobacco consumption habits, physical activity, etc.).  

 The working sample for the present study contains 27,044 observations, ob-

tained after deletion of 21,562 records from the initial dataset. These exclusions are 

mostly due to incomplete records, that is, records with missing values on any of the 

variables used in the study. The item on self-assessed health is responsible for most of 

the incomplete records, due to the following reason: according to the interview proce-
                                                 
(5)    Detailed expositions about the survey procedures and data can be found, among others, in Barros, 
Machado and Galdeano (2008), and Ministério da Saúde - Instituto Nacional de Saúde (1999). 
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dure, survey information could be provided by a third person within the same house-

hold, except for the question on self-assessed health when addressed at an individual 

over fourteen. In this case, the self-assessed health question could only be answered 

by the individual himself. As a consequence, whenever the individual to interview 

was absent from home at the time of the interview, the information relative to her/his 

own self-assessed health was reported missing. It is noted that the present study as-

sumes, at the outset, that these observations are missing at random, that is, the 

working sample (27,044) is not considered to be the result of some form of selectivity. 

Allowing for this issue within a full information approach requires consideration of 

trivariate joint c.d.f.’s, which, in itself, suggests an autonomous extension of the pre-

sent paper. 

 About 4% of the records in the initial sample, relating to individuals who re-

ported benefiting from a voluntary health insurance contract, are also dropped. 

Voluntary health insurance introduces endogeneity concerns, so this type of informa-

tion is side-stepped in the present study (inference results refer to the sub-population 

of individuals with no voluntary health insurance contract). It is noted that the analy-

sis of voluntary health insurance and its effect on medical care utilization or on 

individuals’ health status is beyond the purpose of the present work. 

 The variables ( )sahy, , meant to reflect, respectively, health care utilization 

and self-assessed health status, are measured as follows: y equals the number of visits 

to the doctor in the three months before the survey interview; the value of sah is the 

coded answer to the question “In general, how do you rate your health status?”. Five 

response alternatives yield a rank variable with categories 1 (“very bad”) to 5 (“very 

good”) – see table 1. 

  Summary statistics for y and sah are presented in table 1. Over the three 

months prior to the survey, each individual consulted the doctor 1.42 times, on aver-

age (standard deviation: 2.08) and about 41% of individuals did not visit the physician 

at all. With regard to self-assessed health, most individuals rate her/his own health as 

fair (37.9%), with the empirical distribution of sah exhibiting some degree of negative 

skewness. 
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Table 1 – Dependent Variables 
 

y 
 

 

Rel. Freq. 
 

 

sah 
 

Rel. Freq. 
 

    
0 .413   
1 .247     1 (very bad) .045 
2 .138     2 (bad) .174 
3 .104     3 (fair) .379 
4 .038     4 (good) .363 
5 .022     5 (very good) .039 
6 .018   
7 .005   
8 .004   
9 .001   

10 .004   
11 .0004   
12 .003   

> 12 .003   
    

 

sample size (n):    27044 
 

 

average 
 

1.42 
 

average 
 

3.18 
variance 

 

4.33 variance .84 

 
 
 
 The covariates are described in table 2, being grouped under five headings: 

socioeconomic and demographic, health status, life styles, supply of medical care ser-

vices and health insurance status. As detailed in the note below table 2, the marginals 

of the joint model do not share all regressors ( )21 xx ≠ .(6) The selection of covariates 

for each marginal follows well-established research, both theoretical and empirical, 

developed by several authors (Grossman 1972; Muurinen 1982; Wagstaff 1986; Ken-

kel, 1995). Besides economic and behavioural criteria, practical considerations, such 

as data availability and computational tractability, are also at play in the choice of 

covariates. 

 The variables age and agesq (age squared) are included in both marginals so 

as to capture the health capital depreciation rate, which increases with age (Grossman 

1972). The oldest individual in the working sample is aged 95, and the youngest is 

less than 1 year old (classified as 0 years old in the dataset). The regressor rural (= 1 

if the individual resides in a rural area, 0 otherwise) is also included in both marginals 

                                                 
(6)  In any case, all regressors are included in the models for the conditional p.f. of y|(sah,x) (Poisson 
and negative binomial), in order to allow for comparisons between average effects estimates from both 
approaches. 
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because it can directly influence both health care use and health status. It is included 

here in order to allow for possible behavioural differences in individuals living in ru-

ral regions, relative to those who live in urban areas, as well as for differences in the 

supply of medical care services, which may affect the time-price of medical care use 

and, consequently, the actual use of health services. The variable education represents 

the maximum educational achievement of the individual, measured in number of fully 

completed schooling years. If the person is a child (age < 15), this variable measures 

the number of schooling years of the most educated adult in the household. Education 

is included in both marginals because it may influence both the efficiency in the pro-

duction of health and the propensity to seek care. The average number of years of 

education is 5.68, with a minimum of 0, which means that some individuals, espe-

cially the elderly, never attended formal schooling. It should be noted that Portugal is 

characterized by low levels of educational achievement, especially among the older 

cohorts. Gender (female), income and the individual’s retirement status (retired) are 

also included in both marginals. Income measures monthly disposable household in-

come per equivalent adult computed using the modified OECD scale (the scale 

assigns a weight of 1.0 to the first adult in the household, for each additional adult 

(aged over 13) a weight of 0.5 and, for each child, a weight of 0.3). Total household 

reported income includes regular wages, retirement pensions and all sorts of social 

security subsidies received by the household members. 

 In the socio-economic and demographic group of covariates, married and 

not_work are included only in the marginal that explains medical care use. The activ-

ity status of the individual (not_work) is likely to affect the time price of medical care 

use but not health status, at least not directly. The variable not_work equals 0, if the 

individual is employed or self-employed and worked in the two weeks before the in-

terview, and 1, if the individual did not work. This last group includes children, 

students, individuals on sick leave, unemployed, retired, those doing housework and 

other individuals economically inactive. 67% of the individuals in the sample reported 

not to work during the two weeks before the interview. 
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Table 2 
Regressors – Definition and Summary Statistics 

 

Variable name 
 

 

Variable Definition 
 

average st.dev. min. max. 
 

Socioeconomic and Demographic 
 

age Age, in years, divided by 10 4.26 2.49 0 9.50 

agesq age squared 24.29 20.97 0 90.25 

rural = 1 if the individual lives in a rural area .18 .39 0 1 

education Years of schooling. If child, years of schooling of the most edu-
cated adult in the household. 5.68 4.27 0 24 

female = 1 if the individual is female .60 .49 0 1 

income Monthly disposable household income per equivalent adult  (unit: 
100 euros) 3.63 2.77 .23 24.94 

married (1) = 1 if the individual is married .54 .50 0 1 

not_work (1) = 1 if the individual did not work in the two weeks prior to taking 
the survey .67 .47 0 1 

retired = 1 if the individual is retired .23 .42 0 1 
 

Health Status 
 

limitation = 1 if the individual has some physical handicap that prevents him 
from executing certain physical daily activities .04 .19 0 1 

n_chronic Number of chronic conditions reported  .96 1.03 0 6 

no_dental (2) = 1 if the individual reports no dental hygiene habits   .06 .23 0 1 

ill = 1 if the individual reports being ill in the previous two weeks .37 .48 0 1 

stress = 1 if the individual took sleeping pills in the last two weeks .12 .33 0 1 
 

Life Styles 
 

smoke (2) = 1 if the individual smokes on a daily basis .11 .31 0 1 

sedentary (2) = 1 if the individual’s daily activities require no physical activity .58 .49 0 1 
 

Supply Side 
 

med_supply(1) Total number of licensed physicians per 1000 inhabitants 2.75 2.22 .58 9.15 
 

Health Insurance Status 
 

nhs_only = 1 if the individual is covered only through the National Health 
Service .84 .36 0 1 

 
(1)  Regressor in f1(y|x1) but not in f2(sah|x2).  (2)  Regressor in f2(sah|x2) but not in f1(y|x1). 

 

 
 Apart from no_dental (=1 if the individual reports no dental hygiene habits), 

all remaining health status covariates are assumed to influence both the propensity to 

seek medical care and self-assessed health. Limitations on functional status (limita-

tion) and a count of chronic diseases (n_chronic) are included in order to reflect the 

physical component of health. In addition, the variable ill (=1 if the individual has 
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been feeling sick in the two weeks before the interview) is also used, so as to control 

the effect of the occurrence of an acute illness. The variable stress is used as a proxy 

to reflect the individual’s level of anxiety, thus capturing the mental component of 

health status (Manning et al. 1982). 

 The variables under the heading Life Styles are smoke (= 1 if the individual 

smokes daily) and sedentary (= 1 if the individual’s daily activities require no physi-

cal activity). Both covariates enter only the second margin, directly influencing the 

individual’s health status. The data show that 11% of the population smokes on a 

daily basis, and 58% have daily activities requiring no physical activity. 

 The regressor med_supply (total number of licensed physicians per 1000 resi-

dents in the individual’s area of residency) is included only in the marginal for y, as it 

has no direct bearing on the conditional p.f. of sah. Its inclusion is intended to capture 

the effect, upon the conditional distribution of health care demand, of the availability 

of medical care services in the individual’s area of residence. 

 Turning to the insurance status covariate (nhs_only), a previous short note 

about the Portuguese health care system helps to understand why, in the Portuguese 

context, health insurance covariates should be considered exogenous. The Portuguese 

health care system provides and finances medical care to Portuguese citizens through 

a mix of public and private providers and financing bodies. In what concerns the 

structure providing health insurance, two main coexisting overlapping coverage sys-

tems can be identified: 1) the National Health Service (NHS), mainly financed 

through taxation and covering 100% of the population; 2) special public and private 

health insurance schemes, membership to which is based on profession/occupation 

(usually known as health subsystems). Altogether, these schemes, which provide 

health insurance to about 16% of the population, are financed through a mix of em-

ployer and employee contributions, and membership is mandatory, thus not depending 

on the will of the individual (Barros and Almeida Simões 2007). Given this context, 

covariates reflecting health insurance status can therefore be considered exogenous in 

the application. For an extended discussion of this issue, see Barros, et al. (2008). The 

covariate nhs_only (=1 if the individual is covered only through the NHS, 0 if the in-

dividual has a supplementary health insurance through a health subsystem scheme) is 

included in both marginals. 
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5. Estimation Results 

 
 Estimation results are presented in tables 3 and 4. Table 3 contains estimates 

of the parameters in the conditional p.f. of y given ( )xsah, , ( )xsahyg ,| , specified, 

respectively, as Poisson and negative binomial (NB2) with the usual exponential con-

ditional mean. Table 4 presents estimation results from joint models for ( )xsahyf |, . 

All computations were performed using TSP 5.0 (Hall and Cummins 2005)(7). 

 In what concerns ( )xsahyg ,| , a noticeable, often found, result, is the clear 

rejection of the Poisson model in favour of the NB2 model ( 619.ˆ =α , statistically 

significant). This result can be taken as indication of overdispersion in the data, with 

reference to the Poisson specification. Thus, even with correct specification of 

( )xsahyE ,| , NB2’s estimates seem preferable to those of the Poisson.  

 
Table 3: Estimation Results – ( )xsahyg ,| : Poisson, NB2 

 
 

Poisson 
 

 

NB2 
 

 

Variable 
 

coefficient 
 

 

st. error 
 

coefficient 
 

st. error 
     

intercept .859 .077 .872 .065 
y ̶ ̶ ̶ ̶ 
sah -.339 .014 -.352 .011 
age -.103 .022 -.147 .017 
agesq .007 .002 .012 .002 
rural -.040* .022 -.055 .020 
education .020 .003 .024 .003 
female -.009** .020 .022** .016 
income .012 .003 .014 .003 
married .100 .023 .121 .019 
not_work .120 .025 .100 .021 
retired .066 .026 .075 .025 
limitation .087 .043 .065*       .036 
n_chronic .128 .009 .151 .008 
no_dental -.094 .038 -.110 .033 
ill .479 .018 .488       .016 
stress .275 .023 .292       .021 
smoke -.125 .034 -.110 .027 
sedentary .085 .023 .089 .019 
med_supply .021 .004 .022 .003 
nhs_only -.050*      .027 -.042*      .023 

     

α ̶ ̶ .619 .013 
     

Log-likelihood -45198.4 -41440.8 
SBIC 45300.5 41547.9 
Sample size 27044  

     
 

*  Not significant at the .05 level. **  Not significant at the .10 level. 

                                                 
(7)    TSP codes for ML estimation of copula models with discrete marginals and MSL estimation of the 
mixture model are available on request from the authors. 



 23

 

Table 4 – Estimation Results: ( )xsahyf |,  
 

Model 
 

 

Frank 
 

 

FGM 
 

Mixture 
 

Variable 
 

 

coefficient 
 

st. error 
 

coefficient 
 

st. error 
 

coefficient 
 

st. error 
       

f1(y|x1) 
 

      

intercept -.543 .042 -.538 .040 -.755 .054 
age -.069 .013 -.071 .012 -.097 .018 
agesq .007 .002 .010 .001 .011 .002 
rural -.053 .018 -.035 .017 -.061 .021 
education .012 .002 .017 .002 .013 .003 
female .070 .014 .056 .013 .084 .017 
income .007* .003 .004** .003 .006** .004 
married .129 .016 .096 .015 .150 .021 
not_work .160 .017 .147 .016 .132 .023 
retired .098 .023 .107 .021 .128 .026 
limitation .213 .032 .024** .027 .172 .037 
n_chronic .221 .008 .236 .007 .230 .009 
ill .646  .014 .604 .013 .653 .016 
stress .378   .021 .352 .019 .402 .022 
med_supply .024 .003 .023 .003 .020 .004 
nhs_only -.031** .020 -.051 .019 -.030** .025 
α .684 .011 .593 .010 .179 .015 

       

f2(sah|x2) 
 

      

intercept 3.717 .041 3.815 .041 4.118 .055 
age -.243 .013 -.224 .013 -.260 .015 
agesq .013 .002 .010 .001 .013 .002 
rural .005** .003 -.001** .018 .012** .020 
education .047 .002 .049 .002 .050 .002 
female -.110 .015 -.112 .015 -.123 .017 
income .041 .003 .034 .003 .045 .004 
retired -.236 .022 -.194 .022 -.265 .025 
limitation -.805 .035 -.800 .035 -.881 .043 
n_chronic -.327 .008 -.338 .008 -.365 .009 
no_dental -.148 .028 -.224 .028 -.151 .034 
ill -.702 .015 -.710 .015 -.777 .018 
stress -.355 .021 -.361 .021 -.398 .024 
smoke .037** .023 -.006** .023 .058 .027 
sedentary -.086 .018 -.120 .018 -.113 .020 
nhs_only -.037* .022 -.047 .021 -.053 .026 
λ3 1.351 .017 1.403 .017 1.489 .021 
λ4 2.997 .020 3.062 .020 3.289 .031 
λ5 5.062 .025 5.161 .025 5.554 .046 
σ2 - - - - .686 .027 
δ -1.484 .048 -.688 .021 -.663 .023 
       

Log-likelihood -67,658.7 -67,750.0 -67,548.39 
SBIC 67,699.5 67,765.4 67,742.2 
Sample size 27,044 

       
       

 

* Not significant at the .05 level.  ** Not significant at the .10 level. 
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 Expectably, the estimated coefficients of the regressors in x1 are quite different 

under NB2 and Poisson models for ( )xsahyg ,|  and for ( )11 | xyf  within joint models 

(table 4). Actually they are not comparable, as they do not refer to the same quantities. 

In the former case, each coefficient estimates the relative change of the conditional 

mean of y, given ( )xsah, , that is, 

 
( )

( )xsahyE
xsahyED j

,
,

, 

 

with jD  denoting first-order partial derivative with respect to the j-th regressor of 

( )xsahyE , . In the latter case each estimate refers to the relative change of the condi-

tional expected value of y, marginal to sah, that is, 

 
( )

( )1

1

xyE
xyED j . 

 

Only if ( ) ( )
1

, xyExsahyE = , do these expressions coincide. Independence of y is 

assumed with respect to x covariates out of x1 – no_dental, smoke and sedentary 

(which would qualify as instruments for sah, possibly useful in IV/GMM estimation 

of structural demand equations), but it is clearly not assumed with respect to sah. 

 Under full information approaches (table 4), most coefficients estimates from 

the three models are noted to be similar, in both magnitude and sign. The exception is 

provided by the dependence parameter estimates, a result that may be explained by 

functional form differences between models (with regard to the mixture model, 2σ̂  

possibly captures part of the effects of unobserved heterogeneity). The closeness of 

coefficients estimates from the three models seems to reflect the flexibility of copulas, 

able to discern dependence from the marginals. Meanwhile, the (small) differences to 

estimates from the mixture model may be due to the fact that the latter are not ML 

estimates, being obtained from maximization of an approximate log-likelihood func-

tion. MSL estimates for the mixture model are obtained using S = 100 draws of 

pseudo-random vectors from the bivariate normal. This number of draws is selected 

for computational convenience and from rough comparisons with results for larger S 

(e.g., S = 250 yields almost the same estimates and standard errors). Results might be 
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closer to those from Frank and FGM models with a significantly larger S but this 

would increase the computational burden. Here, instead of direct MC sampling, the 

so-called “quasi-MC” methods (e.g., Halton sequences) may prove more efficient.(8) 

 With regard to regressors coefficients in table 4, some estimates point to a 

varying degree of relevance of the corresponding covariates in the two margins: the 

variable income is hardly relevant to explain health care use but seems clearly rele-

vant in ( )22 | xsahf ; the opposite occurs with respect to rural (residence in a rural 

area), which is relevant in ( )11 | xyf  and irrelevant in ( )22 | xsahf . On the other hand, 

the estimated relevance of nhs-only (membership exclusively in the statutory public 

system) in  ( )11 | xyf  and ( )22 | xsahf  seems to vary under different models (clearly 

relevant in both marginals only under the FGM copula). 

 Overall, estimation results for the joint models are in line with the usual find-

ings in the literature. In general, worse-off individuals in terms of health status seek 

medical care more often (see the sign of covariates limitation (+), n_chronic (+), ill 

(+) and stress (+)) than those in better health. Nevertheless, higher income or educa-

tion levels are both linked to an increase in demand for health care, though income 

shows little relevance. 

 The dependence parameter estimate is both negative and significant across the 

three joint models. As expected, all three models point to a negative dependence be-

tween y and sah, after conditioning on observed factors. The precision of the 

estimates can help fuel the suspicion of simultaneity of both variables, which, as pre-

viously mentioned, can cause endogeneity of sah within regression models for health 

care utilization. 

 Negative dependence between y and sah also seems visible in the estimates of 

the average effects, included in table 5. The figures reported in the table refer to the 

estimated conditional mean of y for, respectively, the five admissible values of sah, 

nhs = 0,1, and remaining covariates at sample averages. Let these remaining covari-

ates be termed *x ; then, under the Poisson and NB2 models, the values in the table 

are computed as ( )( )β̂,,exp *'xnhssah . For joint models, the conditional moment 

 

                                                 
(8)    According to, e.g., Bhat (2001) and Train(2003), Halton draws can be computationally much more 
efficient than direct MC sampling. 
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where f̂  denotes evaluation of f at the estimated parameters (for y > 30 both sum-

mands in the fraction are negligible). Under the mixture model, ( )*,|, xnhssahyf  is 

estimated by (8), with 1̂f  and 2̂f  evaluated at MSL estimates, and ( )ss
21 ,εε , 

100,,1K=s , random draws from the bivariate normal with parameters ( )δσ ˆ,ˆ,0 2 . 

 
Table 5 

Average Effects – ( )*,,| xnhssahyE  
 

 
 

nhs_only = 0 
 

 

sah 
 

 

Poisson 
 

NB2 
 

Frank 
 

FGM 
 

Mixture 
      

1 2.646 2.682 2.866 2.828 2.349 
2 1.887 1.885 2.793 2.772 1.670 
3 1.345 1.325 2.387 2.426 1.237 
4 .959 .932 1.920 1.960 .967 
5 .683 .655 1.771 1.782 .714 

      

  

nhs_only = 1 
 

 

sah 
 

 

Poisson 
 

NB2 
 

Frank 
 

FGM 
 

Mixture 
      

1 2.519 2.572 2.814 2.743 2.252 
2 1.795 1.808 2.737 2.684 1.603 
3 1.280 1.271 2.334 2.344 1.191 
4 .912 .894 1.884 1.900 .932 
5 .650 .628 1.745 1.737 .687 

 

 
 Results indicate that estimates are only slightly higher for nhs_only = 0 than 

for nhs_only = 1. In line with most results in the literature, this suggests that, for an 

“average” individual, being covered only by the NHS has a small downward impact 

on the influence of his own sah on mean health care utilization. As expected, this 

mean decreases as sah increases, a result that is consistently obtained across the vari-
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ous specifications. The Frank and FGM models yield somewhat similar results, dis-

tinctly higher than the Poisson, NB2 and mixture models, namely for higher values of 

sah. 

 Finally, it is interesting to see how the estimated models fit the data. To give 

an idea of the goodness of fit of the models, table 6 gives the true and fitted frequen-

cies of the number of visits to the doctor. The fitted frequencies distribution is 

obtained as the average over observations of the predicted probabilities fitted for each 

count. Formally, ( )∑ =
− n

i ii xsahyfn
1 1

1 ,| , for y = 0, 1, 2, …; under models of the joint 

p.f. of ( )sahy,  this is computed as ( ) ( )( )∑ =
− n

i iiii xsahfxsahyfn
1 22

1 ||, . Both the 

joint models and the NB2 model fit the data relatively well, being particularly good at 

predicting the number of individuals with few visits (up to 2). For y = 3 these four 

models under-predict the actual frequency, while the reverse occurs for y > 3. 

 

Table 6 
Actual and Fitted Frequencies 

   

Model 
 

 

Visits 
 

 

Actual 
 

Poisson 
 

NB2 
 

Frank 
 

FGM 
 

Mixture 
       

0 .413 .313 .414 .414 .400 .408 
1 .247 .311 .256 .254 .260 .253 
2 .138 .189 .140 .140 .145 .136 
3 .104 .097 .076 .077 .080 .075 
4 .038 .047 .043 .044 .045 .043 

> 4 .060 .043 .071 .071 .070 .085 
       

 
 

 The statistical significance of the differences between actual and fitted fre-

quencies can be assessed using a test for the joint moment conditions 

 

( ) ( )( )
( ) ( )( )⎩

⎨
⎧

=>−

===−

,0,|4Pr

,4..., ,0  ,0,|Pr

5 xsahyydE

jxsahjyydE j  

 

with the binary variables jd  defined as ( ) 1=yd j ,  if  y = j ,  j = 0, …, 4, and 

( ) 15 =yd ,  if  y > 4.(9) In order to try and reduce the effects of a large sample size on 

                                                 
(9)  For details on how to implement this type of tests and a simulation on their performance, see Cam-
eron and Trivedi (1998). 
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the outcome of the test, it is carried out with a sub-sample of about 25% of the initial 

size (6436 observations). For each specification, the results of the test, asymptotically 

distributed as a chi-squared distribution with 5 degrees of freedom, are the following: 

 
 

Poisson NB2 Frank FGM Mixture 
     

589.75 144.62 123.51 147.50 198.98 
 

 
 The null hypothesis is clearly rejected across all specifications, in spite of the 

reduced sample size. Nevertheless, the outcomes of the test suggest an ordering of the 

models, with the Poisson displaying a worse result than the remaining models, NB2 

included. According to the results of table 6, the NB2 model competes well with joint 

models, performing even better than the FGM and mixture models. Among joint 

models, in accordance with the results in table 6, the Frank copula seems to provide 

the best fit to the observed dataset. 

 

 

6. Conclusion 

 

 The study of the relevant factors influencing health care utilization constitutes 

one of the main research interests in health economics. In this context, the measure-

ment of the impact of self-assessed health on the demand for health care stands as an 

important issue that requires careful methodological approaches. In particular, the 

possible endogeneity of sah within regression models for health care utilization is 

usually met with GMM-type methods, requiring available instruments. 

 Alternatively, one can turn to a full information methodology, by modelling 

the joint conditional p.f. of sah and a measure of health care utilization (y), given a set 

of regressors. This is the route taken in the present paper, through the use of copula 

functions, that provide the means for flexible and tractable specification of the desired 

p.f.. ML estimation of the adopted models naturally enables recovery of several enti-

ties of interest, such as features of the conditional p.f. of either endogenous variable, 

given the other. Among such features, the value of the conditional expectation of y, 

for different sah values constitutes a prominent example with potential economic in-

terest, indicative of the influence of the individual’s health status on medical care 
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utilization. In itself, this entity constitutes a useful and legitimate alternative to the 

more conventional measure of causal effect of sah on y, within uni- or multi-equation 

regression models for health care utilization. In any case, if one wants to move along 

conventional routes, then GMM/NLIV seem more advisable methods than NLS or 

conditional ML, which, either treat sah as exogenous or simply remove it from the 

regression model. In the present paper, this suspicion is reinforced by the precision 

with which the various adopted joint models are able to gauge the dependence pa-

rameter between sah and y. Nevertheless, a formal test of sah’s endogeneity within a 

limited information approach (e.g., Poisson, NB2 or simultaneous equations model) 

would require use of a Hausman-type test (Grogger 1990), which is not within present 

purposes. 

 The foregoing text has suggested some ideas for future research. One of these 

consists on a systematic enquiry into the identification possibilities of the present full 

information approach, as it relates to limited information modelling. What, if any, is 

the relationship between the parameters identified by the latter, and those identified 

by the former, namely moments of the conditional density of each endogenous vari-

able? Is there a mapping between the two groups of parameters when discrete 

variables are involved? To the best of our knowledge, no such enquiry has yet been 

produced. 

 Another idea consists on the extension of copula models to the trivariate case, 

so as to deal with the possibility of sample selection within the NHSur dataset, apart 

from the present endogeneity issue. In this sense, the present study can constitute a 

first step in that direction, which, in itself a complex issue, may well benefit from 

some of the ideas and methods set forth in the present work. 
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